Nonparametric Statistical Process Control
Download Nonparametric Statistical Process Control full books in PDF, epub, and Kindle. Read online free Nonparametric Statistical Process Control ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Subhabrata Chakraborti |
Publisher | : John Wiley & Sons |
Total Pages | : 448 |
Release | : 2019-04-29 |
Genre | : Mathematics |
ISBN | : 1118456033 |
A unique approach to understanding the foundations of statistical quality control with a focus on the latest developments in nonparametric control charting methodologies Statistical Process Control (SPC) methods have a long and successful history and have revolutionized many facets of industrial production around the world. This book addresses recent developments in statistical process control bringing the modern use of computers and simulations along with theory within the reach of both the researchers and practitioners. The emphasis is on the burgeoning field of nonparametric SPC (NSPC) and the many new methodologies developed by researchers worldwide that are revolutionizing SPC. Over the last several years research in SPC, particularly on control charts, has seen phenomenal growth. Control charts are no longer confined to manufacturing and are now applied for process control and monitoring in a wide array of applications, from education, to environmental monitoring, to disease mapping, to crime prevention. This book addresses quality control methodology, especially control charts, from a statistician’s viewpoint, striking a careful balance between theory and practice. Although the focus is on the newer nonparametric control charts, the reader is first introduced to the main classes of the parametric control charts and the associated theory, so that the proper foundational background can be laid. Reviews basic SPC theory and terminology, the different types of control charts, control chart design, sample size, sampling frequency, control limits, and more Focuses on the distribution-free (nonparametric) charts for the cases in which the underlying process distribution is unknown Provides guidance on control chart selection, choosing control limits and other quality related matters, along with all relevant formulas and tables Uses computer simulations and graphics to illustrate concepts and explore the latest research in SPC Offering a uniquely balanced presentation of both theory and practice, Nonparametric Methods for Statistical Quality Control is a vital resource for students, interested practitioners, researchers, and anyone with an appropriate background in statistics interested in learning about the foundations of SPC and latest developments in NSPC.
Author | : Peihua Qiu |
Publisher | : CRC Press |
Total Pages | : 520 |
Release | : 2013-10-14 |
Genre | : Business & Economics |
ISBN | : 1482220415 |
A major tool for quality control and management, statistical process control (SPC) monitors sequential processes, such as production lines and Internet traffic, to ensure that they work stably and satisfactorily. Along with covering traditional methods, Introduction to Statistical Process Control describes many recent SPC methods that improve upon
Author | : |
Publisher | : |
Total Pages | : 261 |
Release | : 2020 |
Genre | : Process control |
ISBN | : 9783030250829 |
This book explores nonparametric statistical process control. It provides an up-to-date overview of nonparametric Shewhart-type univariate control charts, and reviews the recent literature on nonparametric charts, particularly multivariate schemes. Further, it discusses observations tied to the monitored population quantile, focusing on the Shewhart Sign chart. The book also addresses the issue of practically assuming the normality and the independence when a process is statistically monitored, and examines in detail change-point analysis-based distribution-free control charts designed for Phase I applications. Moreover, it introduces six distribution-free EWMA schemes for simultaneously monitoring the location and scale parameters of a univariate continuous process, and establishes two nonparametric Shewhart-type control charts based on order statistics with signaling runs-type rules. Lastly, the book proposes novel and effective method for early disease detection.
Author | : Muhammad Aslam |
Publisher | : John Wiley & Sons |
Total Pages | : 288 |
Release | : 2020-09-16 |
Genre | : Mathematics |
ISBN | : 1119528453 |
An Introduction to the Fundamentals and History of Control Charts, Applications, and Guidelines for Implementation Introduction to Statistical Process Control examines various types of control charts that are typically used by engineering students and practitioners. This book helps readers develop a better understanding of the history, implementation, and use-cases. Students are presented with varying control chart techniques, information, and roadmaps to ensure their control charts are operating efficiently and producing specification-confirming products. This is the essential text on the theories and applications behind statistical methods and control procedures. This eight-chapter reference breaks information down into digestible sections and covers topics including: ● An introduction to the basics as well as a background of control charts ● Widely used and newly researched attributes of control charts, including guidelines for implementation ● The process capability index for both normal and non-normal distribution via the sampling of multiple dependent states ● An overview of attribute control charts based on memory statistics ● The development of control charts using EQMA statistics For a solid understanding of control methodologies and the basics of quality assurance, Introduction to Statistical Process Control is a definitive reference designed to be read by practitioners and students alike. It is an essential textbook for those who want to explore quality control and systems design.
Author | : Douglas C. Montgomery |
Publisher | : Wiley Global Education |
Total Pages | : 771 |
Release | : 2019-11-06 |
Genre | : Technology & Engineering |
ISBN | : 1119399297 |
Once solely the domain of engineers, quality control has become a vital business operation used to increase productivity and secure competitive advantage. Introduction to Statistical Quality Control offers a detailed presentation of the modern statistical methods for quality control and improvement. Thorough coverage of statistical process control (SPC) demonstrates the efficacy of statistically-oriented experiments in the context of process characterization, optimization, and acceptance sampling, while examination of the implementation process provides context to real-world applications. Emphasis on Six Sigma DMAIC (Define, Measure, Analyze, Improve and Control) provides a strategic problem-solving framework that can be applied across a variety of disciplines. Adopting a balanced approach to traditional and modern methods, this text includes coverage of SQC techniques in both industrial and non-manufacturing settings, providing fundamental knowledge to students of engineering, statistics, business, and management sciences. A strong pedagogical toolset, including multiple practice problems, real-world data sets and examples, and incorporation of Minitab statistics software, provides students with a solid base of conceptual and practical knowledge.
Author | : Peihua Qiu |
Publisher | : John Wiley & Sons |
Total Pages | : 344 |
Release | : 2005-05-20 |
Genre | : Mathematics |
ISBN | : 0471733164 |
The first text to bridge the gap between image processing andjump regression analysis Recent statistical tools developed to estimate jump curves andsurfaces have broad applications, specifically in the area of imageprocessing. Often, significant differences in technicalterminologies make communication between the disciplines of imageprocessing and jump regression analysis difficult. Ineasy-to-understand language, Image Processing and JumpRegression Analysis builds a bridge between the worlds ofcomputer graphics and statistics by addressing both the connectionsand the differences between these two disciplines. The authorprovides a systematic analysis of the methodology behindnonparametric jump regression analysis by outlining procedures thatare easy to use, simple to compute, and have proven statisticaltheory behind them. Key topics include: Conventional smoothing procedures Estimation of jump regression curves Estimation of jump location curves of regression surfaces Jump-preserving surface reconstruction based on localsmoothing Edge detection in image processing Edge-preserving image restoration With mathematical proofs kept to a minimum, this book isuniquely accessible to a broad readership. It may be used as aprimary text in nonparametric regression analysis and imageprocessing as well as a reference guide for academicians andindustry professionals focused on image processing or curve/surfaceestimation.
Author | : Robert L. Mason |
Publisher | : SIAM |
Total Pages | : 271 |
Release | : 2002-01-01 |
Genre | : Technology & Engineering |
ISBN | : 0898714966 |
Detailed coverage of the practical aspects of multivariate statistical process control (MVSPC) based on the application of Hotelling's T2 statistic. MVSPC is the application of multivariate statistical techniques to improve the quality and productivity of an industrial process. Provides valuable insight into the T2 statistic.
Author | : Regina Y. Liu |
Publisher | : American Mathematical Soc. |
Total Pages | : 264 |
Release | : 2006 |
Genre | : Mathematics |
ISBN | : 0821835963 |
The book is a collection of some of the research presented at the workshop of the same name held in May 2003 at Rutgers University. The workshop brought together researchers from two different communities: statisticians and specialists in computational geometry. The main idea unifying these two research areas turned out to be the notion of data depth, which is an important notion both in statistics and in the study of efficiency of algorithms used in computational geometry. Many of the articles in the book lay down the foundations for further collaboration and interdisciplinary research. Information for our distributors: Co-published with the Center for Discrete Mathematics and Theoretical Computer Science beginning with Volume 8. Volumes 1-7 were co-published with the Association for Computer Machinery (ACM).
Author | : Art B. Owen |
Publisher | : CRC Press |
Total Pages | : 322 |
Release | : 2001-05-18 |
Genre | : Mathematics |
ISBN | : 1420036157 |
Empirical likelihood provides inferences whose validity does not depend on specifying a parametric model for the data. Because it uses a likelihood, the method has certain inherent advantages over resampling methods: it uses the data to determine the shape of the confidence regions, and it makes it easy to combined data from multiple sources. It al
Author | : Markos V. Koutras |
Publisher | : Springer Nature |
Total Pages | : 261 |
Release | : 2020-03-19 |
Genre | : Technology & Engineering |
ISBN | : 3030250814 |
This book explores nonparametric statistical process control. It provides an up-to-date overview of nonparametric Shewhart-type univariate control charts, and reviews the recent literature on nonparametric charts, particularly multivariate schemes. Further, it discusses observations tied to the monitored population quantile, focusing on the Shewhart Sign chart. The book also addresses the issue of practically assuming the normality and the independence when a process is statistically monitored, and examines in detail change-point analysis-based distribution-free control charts designed for Phase I applications. Moreover, it introduces six distribution-free EWMA schemes for simultaneously monitoring the location and scale parameters of a univariate continuous process, and establishes two nonparametric Shewhart-type control charts based on order statistics with signaling runs-type rules. Lastly, the book proposes novel and effective method for early disease detection.