Nonlinear Time Series Analysis In Financial Applications
Download Nonlinear Time Series Analysis In Financial Applications full books in PDF, epub, and Kindle. Read online free Nonlinear Time Series Analysis In Financial Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Michael Small |
Publisher | : World Scientific |
Total Pages | : 261 |
Release | : 2005-03-28 |
Genre | : Science |
ISBN | : 981448122X |
Nonlinear time series methods have developed rapidly over a quarter of a century and have reached an advanced state of maturity during the last decade. Implementations of these methods for experimental data are now widely accepted and fairly routine; however, genuinely useful applications remain rare. This book focuses on the practice of applying these methods to solve real problems.To illustrate the usefulness of these methods, a wide variety of physical and physiological systems are considered. The technical tools utilized in this book fall into three distinct, but interconnected areas: quantitative measures of nonlinear dynamics, Monte-Carlo statistical hypothesis testing, and nonlinear modeling. Ten highly detailed applications serve as case studies of fruitful applications and illustrate the mathematical techniques described in the text.
Author | : Philip Rothman |
Publisher | : Springer Science & Business Media |
Total Pages | : 394 |
Release | : 1999-01-31 |
Genre | : Business & Economics |
ISBN | : 0792383796 |
Nonlinear Time Series Analysis of Economic and Financial Data provides an examination of the flourishing interest that has developed in this area over the past decade. The constant theme throughout this work is that standard linear time series tools leave unexamined and unexploited economically significant features in frequently used data sets. The book comprises original contributions written by specialists in the field, and offers a combination of both applied and methodological papers. It will be useful to both seasoned veterans of nonlinear time series analysis and those searching for an informative panoramic look at front-line developments in the area.
Author | : Ruey S. Tsay |
Publisher | : John Wiley & Sons |
Total Pages | : 516 |
Release | : 2018-09-13 |
Genre | : Mathematics |
ISBN | : 1119264065 |
A comprehensive resource that draws a balance between theory and applications of nonlinear time series analysis Nonlinear Time Series Analysis offers an important guide to both parametric and nonparametric methods, nonlinear state-space models, and Bayesian as well as classical approaches to nonlinear time series analysis. The authors—noted experts in the field—explore the advantages and limitations of the nonlinear models and methods and review the improvements upon linear time series models. The need for this book is based on the recent developments in nonlinear time series analysis, statistical learning, dynamic systems and advanced computational methods. Parametric and nonparametric methods and nonlinear and non-Gaussian state space models provide a much wider range of tools for time series analysis. In addition, advances in computing and data collection have made available large data sets and high-frequency data. These new data make it not only feasible, but also necessary to take into consideration the nonlinearity embedded in most real-world time series. This vital guide: • Offers research developed by leading scholars of time series analysis • Presents R commands making it possible to reproduce all the analyses included in the text • Contains real-world examples throughout the book • Recommends exercises to test understanding of material presented • Includes an instructor solutions manual and companion website Written for students, researchers, and practitioners who are interested in exploring nonlinearity in time series, Nonlinear Time Series Analysis offers a comprehensive text that explores the advantages and limitations of the nonlinear models and methods and demonstrates the improvements upon linear time series models.
Author | : Philip Hans Franses |
Publisher | : Cambridge University Press |
Total Pages | : 299 |
Release | : 2000-07-27 |
Genre | : Business & Economics |
ISBN | : 0521770416 |
This 2000 volume reviews non-linear time series models, and their applications to financial markets.
Author | : Massimo Guidolin |
Publisher | : Academic Press |
Total Pages | : 435 |
Release | : 2018-05-29 |
Genre | : Business & Economics |
ISBN | : 0128134100 |
Essentials of Time Series for Financial Applications serves as an agile reference for upper level students and practitioners who desire a formal, easy-to-follow introduction to the most important time series methods applied in financial applications (pricing, asset management, quant strategies, and risk management). Real-life data and examples developed with EViews illustrate the links between the formal apparatus and the applications. The examples either directly exploit the tools that EViews makes available or use programs that by employing EViews implement specific topics or techniques. The book balances a formal framework with as few proofs as possible against many examples that support its central ideas. Boxes are used throughout to remind readers of technical aspects and definitions and to present examples in a compact fashion, with full details (workout files) available in an on-line appendix. The more advanced chapters provide discussion sections that refer to more advanced textbooks or detailed proofs. - Provides practical, hands-on examples in time-series econometrics - Presents a more application-oriented, less technical book on financial econometrics - Offers rigorous coverage, including technical aspects and references for the proofs, despite being an introduction - Features examples worked out in EViews (9 or higher)
Author | : Jianqing Fan |
Publisher | : Springer Science & Business Media |
Total Pages | : 565 |
Release | : 2008-09-11 |
Genre | : Mathematics |
ISBN | : 0387693955 |
This is the first book that integrates useful parametric and nonparametric techniques with time series modeling and prediction, the two important goals of time series analysis. Such a book will benefit researchers and practitioners in various fields such as econometricians, meteorologists, biologists, among others who wish to learn useful time series methods within a short period of time. The book also intends to serve as a reference or text book for graduate students in statistics and econometrics.
Author | : Ruey S. Tsay |
Publisher | : John Wiley & Sons |
Total Pages | : 724 |
Release | : 2010-10-26 |
Genre | : Mathematics |
ISBN | : 1118017099 |
This book provides a broad, mature, and systematic introduction to current financial econometric models and their applications to modeling and prediction of financial time series data. It utilizes real-world examples and real financial data throughout the book to apply the models and methods described. The author begins with basic characteristics of financial time series data before covering three main topics: Analysis and application of univariate financial time series The return series of multiple assets Bayesian inference in finance methods Key features of the new edition include additional coverage of modern day topics such as arbitrage, pair trading, realized volatility, and credit risk modeling; a smooth transition from S-Plus to R; and expanded empirical financial data sets. The overall objective of the book is to provide some knowledge of financial time series, introduce some statistical tools useful for analyzing these series and gain experience in financial applications of various econometric methods.
Author | : Christian Hafner |
Publisher | : Springer Science & Business Media |
Total Pages | : 235 |
Release | : 2013-11-27 |
Genre | : Business & Economics |
ISBN | : 3662126052 |
The book deals with the econometric analysis of high frequency financial time series. It emphasizes a new nonparametric approach to volatility models and provides theoretical and empirical comparisons with conventional ARCH models, applied to foreign exchange rates. Nonparametric models are discussed that cope with asymmetry and long memory of volatility as well as heterogeneity of higher conditional moments.
Author | : Abdol S. Soofi |
Publisher | : Springer Science & Business Media |
Total Pages | : 528 |
Release | : 2002-03-31 |
Genre | : Business & Economics |
ISBN | : 9780792376804 |
Over the last decade, dynamical systems theory and related nonlinear methods have had a major impact on the analysis of time series data from complex systems. Recent developments in mathematical methods of state-space reconstruction, time-delay embedding, and surrogate data analysis, coupled with readily accessible and powerful computational facilities used in gathering and processing massive quantities of high-frequency data, have provided theorists and practitioners unparalleled opportunities for exploratory data analysis, modelling, forecasting, and control. Until now, research exploring the application of nonlinear dynamics and associated algorithms to the study of economies and markets as complex systems is sparse and fragmentary at best. Modelling and Forecasting Financial Data brings together a coherent and accessible set of chapters on recent research results on this topic. To make such methods readily useful in practice, the contributors to this volume have agreed to make available to readers upon request all computer programs used to implement the methods discussed in their respective chapters. Modelling and Forecasting Financial Data is a valuable resource for researchers and graduate students studying complex systems in finance, biology, and physics, as well as those applying such methods to nonlinear time series analysis and signal processing.
Author | : Jiti Gao |
Publisher | : CRC Press |
Total Pages | : 249 |
Release | : 2007-03-22 |
Genre | : Mathematics |
ISBN | : 1420011219 |
Useful in the theoretical and empirical analysis of nonlinear time series data, semiparametric methods have received extensive attention in the economics and statistics communities over the past twenty years. Recent studies show that semiparametric methods and models may be applied to solve dimensionality reduction problems arising from using fully