Nonlinear Schrodinger Equations At Non Conserved Critical Regularity
Download Nonlinear Schrodinger Equations At Non Conserved Critical Regularity full books in PDF, epub, and Kindle. Read online free Nonlinear Schrodinger Equations At Non Conserved Critical Regularity ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Terence Tao |
Publisher | : American Mathematical Soc. |
Total Pages | : 394 |
Release | : 2006 |
Genre | : Mathematics |
ISBN | : 0821841432 |
"Starting only with a basic knowledge of graduate real analysis and Fourier analysis, the text first presents basic nonlinear tools such as the bootstrap method and perturbation theory in the simpler context of nonlinear ODE, then introduces the harmonic analysis and geometric tools used to control linear dispersive PDE. These methods are then combined to study four model nonlinear dispersive equations. Through extensive exercises, diagrams, and informal discussion, the book gives a rigorous theoretical treatment of the material, the real-world intuition and heuristics that underlie the subject, as well as mentioning connections with other areas of PDE, harmonic analysis, and dynamical systems.".
Author | : David Ellwood |
Publisher | : American Mathematical Soc. |
Total Pages | : 587 |
Release | : 2013-06-26 |
Genre | : Mathematics |
ISBN | : 0821868616 |
This volume is a collection of notes from lectures given at the 2008 Clay Mathematics Institute Summer School, held in Zürich, Switzerland. The lectures were designed for graduate students and mathematicians within five years of the Ph.D., and the main focus of the program was on recent progress in the theory of evolution equations. Such equations lie at the heart of many areas of mathematical physics and arise not only in situations with a manifest time evolution (such as linear and nonlinear wave and Schrödinger equations) but also in the high energy or semi-classical limits of elliptic problems. The three main courses focused primarily on microlocal analysis and spectral and scattering theory, the theory of the nonlinear Schrödinger and wave equations, and evolution problems in general relativity. These major topics were supplemented by several mini-courses reporting on the derivation of effective evolution equations from microscopic quantum dynamics; on wave maps with and without symmetries; on quantum N-body scattering, diffraction of waves, and symmetric spaces; and on nonlinear Schrödinger equations at critical regularity. Although highly detailed treatments of some of these topics are now available in the published literature, in this collection the reader can learn the fundamental ideas and tools with a minimum of technical machinery. Moreover, the treatment in this volume emphasizes common themes and techniques in the field, including exact and approximate conservation laws, energy methods, and positive commutator arguments. Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).
Author | : Thierry Cazenave |
Publisher | : American Mathematical Soc. |
Total Pages | : 346 |
Release | : 2003 |
Genre | : Mathematics |
ISBN | : 0821833995 |
The nonlinear Schrodinger equation has received a great deal of attention from mathematicians, particularly because of its applications to nonlinear optics. This book presents various mathematical aspects of the nonlinear Schrodinger equation. It studies both problems of local nature and problems of global nature.
Author | : Jean Bourgain |
Publisher | : Princeton University Press |
Total Pages | : 309 |
Release | : 2009-01-10 |
Genre | : Mathematics |
ISBN | : 1400827795 |
This collection of new and original papers on mathematical aspects of nonlinear dispersive equations includes both expository and technical papers that reflect a number of recent advances in the field. The expository papers describe the state of the art and research directions. The technical papers concentrate on a specific problem and the related analysis and are addressed to active researchers. The book deals with many topics that have been the focus of intensive research and, in several cases, significant progress in recent years, including hyperbolic conservation laws, Schrödinger operators, nonlinear Schrödinger and wave equations, and the Euler and Navier-Stokes equations.
Author | : Benjamin Dodson |
Publisher | : Cambridge University Press |
Total Pages | : 256 |
Release | : 2019-03-28 |
Genre | : Mathematics |
ISBN | : 1108681670 |
This study of Schrödinger equations with power-type nonlinearity provides a great deal of insight into other dispersive partial differential equations and geometric partial differential equations. It presents important proofs, using tools from harmonic analysis, microlocal analysis, functional analysis, and topology. This includes a new proof of Keel–Tao endpoint Strichartz estimates, and a new proof of Bourgain's result for radial, energy-critical NLS. It also provides a detailed presentation of scattering results for energy-critical and mass-critical equations. This book is suitable as the basis for a one-semester course, and serves as a useful introduction to nonlinear Schrödinger equations for those with a background in harmonic analysis, functional analysis, and partial differential equations.
Author | : Vladimir G. Ivancevic |
Publisher | : Springer Science & Business Media |
Total Pages | : 938 |
Release | : 2010-01-18 |
Genre | : Computers |
ISBN | : 9048133505 |
Quantum Neural Computation is a graduate–level monographic textbook. It presents a comprehensive introduction, both non-technical and technical, into modern quantum neural computation, the science behind the fiction movie Stealth. Classical computing systems perform classical computations (i.e., Boolean operations, such as AND, OR, NOT gates) using devices that can be described classically (e.g., MOSFETs). On the other hand, quantum computing systems perform classical computations using quantum devices (quantum dots), that is devices that can be described only using quantum mechanics. Any information transfer between such computing systems involves a state measurement. This book describes this information transfer at the edge of classical and quantum chaos and turbulence, where mysterious quantum-mechanical linearity meets even more mysterious brain’s nonlinear complexity, in order to perform a super–high–speed and error–free computations. This monograph describes a crossroad between quantum field theory, brain science and computational intelligence.
Author | : Da Prato Guiseppe |
Publisher | : |
Total Pages | : |
Release | : 2013-11-21 |
Genre | : |
ISBN | : 9781306148061 |
The aim of this book is to give a systematic and self-contained presentation of basic results on stochastic evolution equations in infinite dimensional, typically Hilbert and Banach, spaces. These are a generalization of stochastic differential equations as introduced by Ito and Gikham that occur, for instance, when describing random phenomena that crop up in science and engineering, as well as in the study of differential equations. The book is divided into three parts. In the first the authors give a self-contained exposition of the basic properties of probability measure on separable Banach and Hilbert spaces, as required later; they assume a reasonable background in probability theory and finite dimensional stochastic processes. The second part is devoted to the existence and uniqueness of solutions of a general stochastic evolution equation, and the third concerns the qualitative properties of those solutions. Appendices gather together background results from analysis that are otherwise hard to find under one roof. The book ends with a comprehensive bibliography that will contribute to the book's value for all working in stochastic differential equations."
Author | : Joachim Krieger |
Publisher | : European Mathematical Society |
Total Pages | : 494 |
Release | : 2012 |
Genre | : Mathematics |
ISBN | : 9783037191064 |
Wave maps are the simplest wave equations taking their values in a Riemannian manifold $(M,g)$. Their Lagrangian is the same as for the scalar equation, the only difference being that lengths are measured with respect to the metric $g$. By Noether's theorem, symmetries of the Lagrangian imply conservation laws for wave maps, such as conservation of energy. In coordinates, wave maps are given by a system of semilinear wave equations. Over the past 20 years important methods have emerged which address the problem of local and global wellposedness of this system. Due to weak dispersive effects, wave maps defined on Minkowski spaces of low dimensions, such as $\mathbb R^{2+1}_{t,x}$, present particular technical difficulties. This class of wave maps has the additional important feature of being energy critical, which refers to the fact that the energy scales exactly like the equation. Around 2000 Daniel Tataru and Terence Tao, building on earlier work of Klainerman-Machedon, proved that smooth data of small energy lead to global smooth solutions for wave maps from 2+1 dimensions into target manifolds satisfying some natural conditions. In contrast, for large data, singularities may occur in finite time for $M =\mathbb S^2$ as target. This monograph establishes that for $\mathbb H$ as target the wave map evolution of any smooth data exists globally as a smooth function. While the authors restrict themselves to the hyperbolic plane as target the implementation of the concentration-compactness method, the most challenging piece of this exposition, yields more detailed information on the solution. This monograph will be of interest to experts in nonlinear dispersive equations, in particular to those working on geometric evolution equations.
Author | : Baoxiang Wang |
Publisher | : World Scientific |
Total Pages | : 298 |
Release | : 2011-08-10 |
Genre | : Mathematics |
ISBN | : 9814458392 |
This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrödinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods.This book is self-contained and may also be used as an advanced textbook by graduate students in analysis and PDE subjects and even ambitious undergraduate students.
Author | : Donatella Danielli |
Publisher | : American Mathematical Soc. |
Total Pages | : 146 |
Release | : 2007 |
Genre | : Mathematics |
ISBN | : 0821837400 |
This volume contains research and expository articles based on talks presented at the 2nd Symposium on Analysis and PDEs, held at Purdue University. The Symposium focused on topics related to the theory and applications of nonlinear partial differential equations that are at the forefront of current international research. Papers in this volume provide a comprehensive account of many of the recent developments in the field. The topics featured in this volume include: kinetic formulations of nonlinear PDEs; recent unique continuation results and their applications; concentrations and constrained Hamilton-Jacobi equations; nonlinear Schrodinger equations; quasiminimal sets for Hausdorff measures; Schrodinger flows into Kahler manifolds; and parabolic obstacle problems with applications to finance. The clear and concise presentation in many articles makes this volume suitable for both researchers and graduate students.