Nonlinear Interpolation And Boundary Value Problems
Download Nonlinear Interpolation And Boundary Value Problems full books in PDF, epub, and Kindle. Read online free Nonlinear Interpolation And Boundary Value Problems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Paul W. Eloe |
Publisher | : World Scientific |
Total Pages | : 249 |
Release | : 2016 |
Genre | : Mathematics |
ISBN | : 9814733482 |
"This book is devoted to the study of solutions of nonlinear ODE boundary value problems as nonlinear interpolation problems. In 1967, Lasota and Opial showed that, under suitable hypotheses, if solutions of a second-order nonlinear differential equation passing through two distinct points are unique, when they exist, then, in fact, a solution passing through two distinct points does exist. That result, coupled with the pioneering work of Philip Hartman on what was then called unrestricted n-parameter families has stimulated 50 years of rapid development in the study of solutions of boundary value problems as nonlinear interpolation problems. The purpose of this book is two-fold. First, the results that have been generated in the past 50 years are collected for the first time to produce a comprehensive and coherent treatment of what is now a well-defined area of study in the qualitative theory of ordinary differential equations. Second, methods and technical tools are sufficiently exposed so that the interested reader can contribute to the study of nonlinear interpolation"--
Author | : Jacques Louis Lions |
Publisher | : Springer Science & Business Media |
Total Pages | : 375 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642651615 |
1. We describe, at first in a very formaI manner, our essential aim. n Let m be an op en subset of R , with boundary am. In m and on am we introduce, respectively, linear differential operators P and Qj' 0 ~ i ~ 'V. By "non-homogeneous boundary value problem" we mean a problem of the following type: let f and gj' 0 ~ i ~ 'v, be given in function space s F and G , F being a space" on m" and the G/ s spaces" on am" ; j we seek u in a function space u/t "on m" satisfying (1) Pu = f in m, (2) Qju = gj on am, 0 ~ i ~ 'v«])). Qj may be identically zero on part of am, so that the number of boundary conditions may depend on the part of am considered 2. We take as "working hypothesis" that, for fEF and gjEG , j the problem (1), (2) admits a unique solution u E U/t, which depends 3 continuously on the data . But for alllinear probIems, there is a large number of choiees for the space s u/t and {F; G} (naturally linke d together). j Generally speaking, our aim is to determine families of spaces 'ft and {F; G}, associated in a "natural" way with problem (1), (2) and con j venient for applications, and also all possible choiees for u/t and {F; G} j in these families.
Author | : John R Graef |
Publisher | : World Scientific |
Total Pages | : 343 |
Release | : 2018-09-18 |
Genre | : Mathematics |
ISBN | : 9813274042 |
The authors give a systematic introduction to boundary value problems (BVPs) for ordinary differential equations. The book is a graduate level text and good to use for individual study. With the relaxed style of writing, the reader will find it to be an enticing invitation to join this important area of mathematical research. Starting with the basics of boundary value problems for ordinary differential equations, linear equations and the construction of Green's functions are presented clearly.A discussion of the important question of the existence of solutions to both linear and nonlinear problems plays a central role in this volume and this includes solution matching and the comparison of eigenvalues.The important and very active research area on existence and multiplicity of positive solutions is treated in detail. The last chapter is devoted to nodal solutions for BVPs with separated boundary conditions as well as for non-local problems.While this Volume II complements , it can be used as a stand-alone work.
Author | : John R Graef |
Publisher | : World Scientific |
Total Pages | : 177 |
Release | : 2018-02-13 |
Genre | : Mathematics |
ISBN | : 9813236477 |
The authors give a treatment of the theory of ordinary differential equations (ODEs) that is excellent for a first course at the graduate level as well as for individual study. The reader will find it to be a captivating introduction with a number of non-routine exercises dispersed throughout the book.The authors begin with a study of initial value problems for systems of differential equations including the Picard and Peano existence theorems. The continuability of solutions, their continuous dependence on initial conditions, and their continuous dependence with respect to parameters are presented in detail. This is followed by a discussion of the differentiability of solutions with respect to initial conditions and with respect to parameters. Comparison results and differential inequalities are included as well.Linear systems of differential equations are treated in detail as is appropriate for a study of ODEs at this level. Just the right amount of basic properties of matrices are introduced to facilitate the observation of matrix systems and especially those with constant coefficients. Floquet theory for linear periodic systems is presented and used to analyze nonhomogeneous linear systems.Stability theory of first order and vector linear systems are considered. The relationships between stability of solutions, uniform stability, asymptotic stability, uniformly asymptotic stability, and strong stability are examined and illustrated with examples as is the stability of vector linear systems. The book concludes with a chapter on perturbed systems of ODEs.
Author | : Society for Industrial and Applied Mathematics |
Publisher | : American Mathematical Soc. |
Total Pages | : 294 |
Release | : 1970 |
Genre | : Mathematics |
ISBN | : 9780821813218 |
Author | : A. Mehran Shahhosseini |
Publisher | : Trans Tech Publications Ltd |
Total Pages | : 431 |
Release | : 2014-10-27 |
Genre | : Technology & Engineering |
ISBN | : 3038267066 |
2014 International Conference on Mechanics and Mechanical Engineering, (MME 2014), September 13-14, 2014, Wuhan, China
Author | : Ralph E. White |
Publisher | : Springer Science & Business Media |
Total Pages | : 871 |
Release | : 2010-02-06 |
Genre | : Science |
ISBN | : 3642043119 |
This book presents Maple solutions to a wide range of problems relevant to chemical engineers and others. Many of these solutions use Maple’s symbolic capability to help bridge the gap between analytical and numerical solutions. The readers are strongly encouraged to refer to the references included in the book for a better understanding of the physics involved, and for the mathematical analysis. This book was written for a senior undergraduate or a first year graduate student course in chemical engineering. Most of the examples in this book were done in Maple 10. However, the codes should run in the most recent version of Maple. We strongly encourage the readers to use the classic worksheet (*. mws) option in Maple as we believe it is more user-friendly and robust. In chapter one you will find an introduction to Maple which includes simple basics as a convenience for the reader such as plotting, solving linear and nonlinear equations, Laplace transformations, matrix operations, ‘do loop,’ and ‘while loop. ’ Chapter two presents linear ordinary differential equations in section 1 to include homogeneous and nonhomogeneous ODEs, solving systems of ODEs using the matrix exponential and Laplace transform method. In section two of chapter two, nonlinear ordinary differential equations are presented and include simultaneous series reactions, solving nonlinear ODEs with Maple’s ‘dsolve’ command, stop conditions, differential algebraic equations, and steady state solutions. Chapter three addresses boundary value problems.
Author | : Joe D. Hoffman |
Publisher | : CRC Press |
Total Pages | : 840 |
Release | : 2018-10-03 |
Genre | : Mathematics |
ISBN | : 1482270609 |
Emphasizing the finite difference approach for solving differential equations, the second edition of Numerical Methods for Engineers and Scientists presents a methodology for systematically constructing individual computer programs. Providing easy access to accurate solutions to complex scientific and engineering problems, each chapter begins with objectives, a discussion of a representative application, and an outline of special features, summing up with a list of tasks students should be able to complete after reading the chapter- perfect for use as a study guide or for review. The AIAA Journal calls the book "...a good, solid instructional text on the basic tools of numerical analysis."
Author | : John R. Hauser |
Publisher | : Springer Science & Business Media |
Total Pages | : 1013 |
Release | : 2009-03-24 |
Genre | : Technology & Engineering |
ISBN | : 1402099207 |
There are many books on the use of numerical methods for solving engineering problems and for modeling of engineering artifacts. In addition there are many styles of such presentations ranging from books with a major emphasis on theory to books with an emphasis on applications. The purpose of this book is hopefully to present a somewhat different approach to the use of numerical methods for - gineering applications. Engineering models are in general nonlinear models where the response of some appropriate engineering variable depends in a nonlinear manner on the - plication of some independent parameter. It is certainly true that for many types of engineering models it is sufficient to approximate the real physical world by some linear model. However, when engineering environments are pushed to - treme conditions, nonlinear effects are always encountered. It is also such - treme conditions that are of major importance in determining the reliability or failure limits of engineering systems. Hence it is essential than engineers have a toolbox of modeling techniques that can be used to model nonlinear engineering systems. Such a set of basic numerical methods is the topic of this book. For each subject area treated, nonlinear models are incorporated into the discussion from the very beginning and linear models are simply treated as special cases of more general nonlinear models. This is a basic and fundamental difference in this book from most books on numerical methods.
Author | : |
Publisher | : Elsevier |
Total Pages | : 503 |
Release | : 1985-01-01 |
Genre | : Mathematics |
ISBN | : 0080872212 |
Trends in the Theory and Practice of Non-Linear Analysis