Nonlinear Hyperbolic Equations — Theory, Computation Methods, and Applications

Nonlinear Hyperbolic Equations — Theory, Computation Methods, and Applications
Author: Josef Ballmann
Publisher: Springer Science & Business Media
Total Pages: 729
Release: 2013-03-08
Genre: Technology & Engineering
ISBN: 3322878694

On the occasion of the International Conference on Nonlinear Hyperbolic Problems held in St. Etienne, France, 1986 it was decided to start a two years cycle of conferences on this very rapidly expanding branch of mathematics and it·s applications in Continuum Mechanics and Aerodynamics. The second conference toolc place in Aachen, FRG, March 14-18, 1988. The number of more than 200 participants from more than 20 countries all over the world and about 100 invited and contributed papers, well balanced between theory, numerical analysis and applications, do not leave any doubt that it was the right decision to start this cycle of conferences, of which the third will be organized in Sweden in 1990. ThiS volume contains sixty eight original papers presented at the conference, twenty two cif them dealing with the mathematical theory, e.g. existence, uniqueness, stability, behaviour of solutions, physical modelling by evolution equations. Twenty two articles in numerical analysis are concerned with stability and convergence to the physically relevant solutions such as schemes especially deviced for treating shoclcs, contact discontinuities and artificial boundaries. Twenty four papers contain multidimensional computational applications to nonlinear waves in solids, flow through porous media and compressible fluid flow including shoclcs, real gas effects, multiphase phenomena, chemical reactions etc. The editors and organizers of the Second International Conference on Hyperbolic Problems would lilce to thanlc the Scientific Committee for the generous support of recommending invited lectures and selecting the contributed papers of the conference.

Numerical Approximation of Hyperbolic Systems of Conservation Laws

Numerical Approximation of Hyperbolic Systems of Conservation Laws
Author: Edwige Godlewski
Publisher: Springer Science & Business Media
Total Pages: 519
Release: 2013-11-21
Genre: Mathematics
ISBN: 1461207134

This work is devoted to the theory and approximation of nonlinear hyper bolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors, and we shall make frequent references to Godlewski and Raviart (1991) (hereafter noted G. R. ), though the present volume can be read independently. This earlier publication, apart from a first chap ter, especially covered the scalar case. Thus, we shall detail here neither the mathematical theory of multidimensional scalar conservation laws nor their approximation in the one-dimensional case by finite-difference con servative schemes, both of which were treated in G. R. , but we shall mostly consider systems. The theory for systems is in fact much more difficult and not at all completed. This explains why we shall mainly concentrate on some theoretical aspects that are needed in the applications, such as the solution of the Riemann problem, with occasional insights into more sophisticated problems. The present book is divided into six chapters, including an introductory chapter. For the reader's convenience, we shall resume in this Introduction the notions that are necessary for a self-sufficient understanding of this book -the main definitions of hyperbolicity, weak solutions, and entropy present the practical examples that will be thoroughly developed in the following chapters, and recall the main results concerning the scalar case.

Finite Volume Methods for Hyperbolic Problems

Finite Volume Methods for Hyperbolic Problems
Author: Randall J. LeVeque
Publisher: Cambridge University Press
Total Pages: 582
Release: 2002-08-26
Genre: Mathematics
ISBN: 1139434187

This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.

Theory, Numerics and Applications of Hyperbolic Problems II

Theory, Numerics and Applications of Hyperbolic Problems II
Author: Christian Klingenberg
Publisher: Springer
Total Pages: 698
Release: 2018-06-27
Genre: Mathematics
ISBN: 3319915487

The second of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.

Innovative Methods for Numerical Solutions of Partial Differential Equations

Innovative Methods for Numerical Solutions of Partial Differential Equations
Author: P. L. Roe
Publisher: World Scientific
Total Pages: 418
Release: 2002
Genre: Mathematics
ISBN: 9812810811

This book consists of 20 review articles dedicated to Prof. Philip Roe on the occasion of his 60th birthday and in appreciation of his original contributions to computational fluid dynamics. The articles, written by leading researchers in the field, cover many topics, including theory and applications, algorithm developments and modern computational techniques for industry. Contents: OC A One-Sided ViewOCO: The Real Story (B van Leer); Collocated Upwind Schemes for Ideal MHD (K G Powell); The Penultimate Scheme for Systems of Conservation Laws: Finite Difference ENO with Marquina's Flux Splitting (R P Fedkiw et al.); A Finite Element Based Level-Set Method for Multiphase Flows (B Engquist & A-K Tornberg); The GHOST Fluid Method for Viscous Flows (R P Fedkiw & X-D Liu); Factorizable Schemes for the Equations of Fluid Flow (D Sidilkover); Evolution Galerkin Methods as Finite Difference Schemes (K W Morton); Fluctuation Distribution Schemes on Adjustable Meshes for Scalar Hyperbolic Equations (M J Baines); Superconvergent Lift Estimates Through Adjoint Error Analysis (M B Giles & N A Pierce); Somewhere between the LaxOCoWendroff and Roe Schemes for Calculating Multidimensional Compressible Flows (A Lerat et al.); Flux Schemes for Solving Nonlinear Systems of Conservation Laws (J M Ghidaglia); A LaxOCoWendroff Type Theorem for Residual Schemes (R Abgrall et al.); Kinetic Schemes for Solving SaintOCoVenant Equations on Unstructured Grids (M O Bristeau & B Perthame); Nonlinear Projection Methods for Multi-Entropies NavierOCoStokes Systems (C Berthon & F Coquel); A Hybrid Fluctuation Splitting Scheme for Two-Dimensional Compressible Steady Flows (P De Palma et al.); Some Recent Developments in Kinetic Schemes Based on Least Squares and Entropy Variables (S M Deshpande); Difference Approximation for Scalar Conservation Law. Consistency with Entropy Condition from the Viewpoint of Oleinik's E-Condition (H Aiso); Lessons Learned from the Blast Wave Computation Using Overset Moving Grids: Grid Motion Improves the Resolution (K Fujii). Readership: Researchers and graduate students in numerical and computational mathematics in engineering."

Revival: Numerical Solution Of Convection-Diffusion Problems (1996)

Revival: Numerical Solution Of Convection-Diffusion Problems (1996)
Author: K.W. Morton
Publisher: CRC Press
Total Pages: 288
Release: 2019-02-25
Genre: Mathematics
ISBN: 1351359665

Accurate modeling of the interaction between convective and diffusive processes is one of the most common challenges in the numerical approximation of partial differential equations. This is partly due to the fact that numerical algorithms, and the techniques used for their analysis, tend to be very different in the two limiting cases of elliptic and hyperbolic equations. Many different ideas and approaches have been proposed in widely differing contexts to resolve the difficulties of exponential fitting, compact differencing, number upwinding, artificial viscosity, streamline diffusion, Petrov-Galerkin and evolution Galerkin being some examples from the main fields of finite difference and finite element methods. The main aim of this volume is to draw together all these ideas and see how they overlap and differ. The reader is provided with a useful and wide ranging source of algorithmic concepts and techniques of analysis. The material presented has been drawn both from theoretically oriented literature on finite differences, finite volume and finite element methods and also from accounts of practical, large-scale computing, particularly in the field of computational fluid dynamics.

Computational Methods for the Atmosphere and the Oceans

Computational Methods for the Atmosphere and the Oceans
Author: Roger Temam
Publisher: Elsevier
Total Pages: 797
Release: 2009-06-16
Genre: Computers
ISBN: 0080931030

This book provides a survey of the frontiers of research in the numerical modeling and mathematical analysis used in the study of the atmosphere and oceans. The details of the current practices in global atmospheric and ocean models, the assimilation of observational data into such models and the numerical techniques used in theoretical analysis of the atmosphere and ocean are among the topics covered.• Truly interdisciplinary: scientific interactions between specialties of atmospheric and ocean sciences and applied and computational mathematics • Uses the approach of computational mathematicians, applied and numerical analysts and the tools appropriate for unsolved problems in the atmospheric and oceanic sciences• Contributions uniquely address central problems and provide a survey of the frontier of research