Nonlinear Equations And Optimisation
Download Nonlinear Equations And Optimisation full books in PDF, epub, and Kindle. Read online free Nonlinear Equations And Optimisation ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : J. E. Dennis, Jr. |
Publisher | : SIAM |
Total Pages | : 394 |
Release | : 1996-12-01 |
Genre | : Mathematics |
ISBN | : 9781611971200 |
This book has become the standard for a complete, state-of-the-art description of the methods for unconstrained optimization and systems of nonlinear equations. Originally published in 1983, it provides information needed to understand both the theory and the practice of these methods and provides pseudocode for the problems. The algorithms covered are all based on Newton's method or "quasi-Newton" methods, and the heart of the book is the material on computational methods for multidimensional unconstrained optimization and nonlinear equation problems. The republication of this book by SIAM is driven by a continuing demand for specific and sound advice on how to solve real problems. The level of presentation is consistent throughout, with a good mix of examples and theory, making it a valuable text at both the graduate and undergraduate level. It has been praised as excellent for courses with approximately the same name as the book title and would also be useful as a supplemental text for a nonlinear programming or a numerical analysis course. Many exercises are provided to illustrate and develop the ideas in the text. A large appendix provides a mechanism for class projects and a reference for readers who want the details of the algorithms. Practitioners may use this book for self-study and reference. For complete understanding, readers should have a background in calculus and linear algebra. The book does contain background material in multivariable calculus and numerical linear algebra.
Author | : L.T. Watson |
Publisher | : Gulf Professional Publishing |
Total Pages | : 392 |
Release | : 2001-03-28 |
Genre | : Mathematics |
ISBN | : 9780444505996 |
After a review of historical developments in convergence analysis for Newton's and Newton-like methods, 18 papers deal in depth with various classical, or neo-classical approaches, as well as newer ideas on optimization and solving linear equations. A sampling of topics: truncated Newton methods, sequential quadratic programming for large- scale nonlinear optimization, and automatic differentiation of algorithms. This monograph, one of seven volumes in the set, is also published as the Journal of Computational and Applied Mathematics; v.124 (2000). Indexed only by author. c. Book News Inc.
Author | : Neculai Andrei |
Publisher | : Springer Science & Business Media |
Total Pages | : 356 |
Release | : 2013-06-22 |
Genre | : Mathematics |
ISBN | : 1461467977 |
Here is a collection of nonlinear optimization applications from the real world, expressed in the General Algebraic Modeling System (GAMS). The concepts are presented so that the reader can quickly modify and update them to represent real-world situations.
Author | : Eligius M.T. Hendrix |
Publisher | : Springer |
Total Pages | : 218 |
Release | : 2010-04-27 |
Genre | : Mathematics |
ISBN | : 0387886702 |
This self-contained text provides a solid introduction to global and nonlinear optimization, providing students of mathematics and interdisciplinary sciences with a strong foundation in applied optimization techniques. The book offers a unique hands-on and critical approach to applied optimization which includes the presentation of numerous algorithms, examples, and illustrations, designed to improve the reader’s intuition and develop the analytical skills needed to identify optimization problems, classify the structure of a model, and determine whether a solution fulfills optimality conditions.
Author | : Richard W. Cottle |
Publisher | : Springer |
Total Pages | : 644 |
Release | : 2017-06-11 |
Genre | : Business & Economics |
ISBN | : 1493970550 |
This textbook on Linear and Nonlinear Optimization is intended for graduate and advanced undergraduate students in operations research and related fields. It is both literate and mathematically strong, yet requires no prior course in optimization. As suggested by its title, the book is divided into two parts covering in their individual chapters LP Models and Applications; Linear Equations and Inequalities; The Simplex Algorithm; Simplex Algorithm Continued; Duality and the Dual Simplex Algorithm; Postoptimality Analyses; Computational Considerations; Nonlinear (NLP) Models and Applications; Unconstrained Optimization; Descent Methods; Optimality Conditions; Problems with Linear Constraints; Problems with Nonlinear Constraints; Interior-Point Methods; and an Appendix covering Mathematical Concepts. Each chapter ends with a set of exercises. The book is based on lecture notes the authors have used in numerous optimization courses the authors have taught at Stanford University. It emphasizes modeling and numerical algorithms for optimization with continuous (not integer) variables. The discussion presents the underlying theory without always focusing on formal mathematical proofs (which can be found in cited references). Another feature of this book is its inclusion of cultural and historical matters, most often appearing among the footnotes. "This book is a real gem. The authors do a masterful job of rigorously presenting all of the relevant theory clearly and concisely while managing to avoid unnecessary tedious mathematical details. This is an ideal book for teaching a one or two semester masters-level course in optimization – it broadly covers linear and nonlinear programming effectively balancing modeling, algorithmic theory, computation, implementation, illuminating historical facts, and numerous interesting examples and exercises. Due to the clarity of the exposition, this book also serves as a valuable reference for self-study." Professor Ilan Adler, IEOR Department, UC Berkeley "A carefully crafted introduction to the main elements and applications of mathematical optimization. This volume presents the essential concepts of linear and nonlinear programming in an accessible format filled with anecdotes, examples, and exercises that bring the topic to life. The authors plumb their decades of experience in optimization to provide an enriching layer of historical context. Suitable for advanced undergraduates and masters students in management science, operations research, and related fields." Michael P. Friedlander, IBM Professor of Computer Science, Professor of Mathematics, University of British Columbia
Author | : Andrzej Ruszczynski |
Publisher | : Princeton University Press |
Total Pages | : 463 |
Release | : 2011-09-19 |
Genre | : Mathematics |
ISBN | : 1400841054 |
Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern topics such as optimality conditions and numerical methods for problems involving nondifferentiable functions, semidefinite programming, metric regularity and stability theory of set-constrained systems, and sensitivity analysis of optimization problems. Based on a decade's worth of notes the author compiled in successfully teaching the subject, this book will help readers to understand the mathematical foundations of the modern theory and methods of nonlinear optimization and to analyze new problems, develop optimality theory for them, and choose or construct numerical solution methods. It is a must for anyone seriously interested in optimization.
Author | : Jorge Nocedal |
Publisher | : Springer Science & Business Media |
Total Pages | : 686 |
Release | : 2006-12-11 |
Genre | : Mathematics |
ISBN | : 0387400656 |
Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.
Author | : R. Fletcher |
Publisher | : John Wiley & Sons |
Total Pages | : 470 |
Release | : 2013-06-06 |
Genre | : Mathematics |
ISBN | : 111872318X |
Fully describes optimization methods that are currently most valuable in solving real-life problems. Since optimization has applications in almost every branch of science and technology, the text emphasizes their practical aspects in conjunction with the heuristics useful in making them perform more reliably and efficiently. To this end, it presents comparative numerical studies to give readers a feel for possibile applications and to illustrate the problems in assessing evidence. Also provides theoretical background which provides insights into how methods are derived. This edition offers revised coverage of basic theory and standard techniques, with updated discussions of line search methods, Newton and quasi-Newton methods, and conjugate direction methods, as well as a comprehensive treatment of restricted step or trust region methods not commonly found in the literature. Also includes recent developments in hybrid methods for nonlinear least squares; an extended discussion of linear programming, with new methods for stable updating of LU factors; and a completely new section on network programming. Chapters include computer subroutines, worked examples, and study questions.
Author | : C. T. Kelley |
Publisher | : SIAM |
Total Pages | : 179 |
Release | : 1995-01-01 |
Genre | : Mathematics |
ISBN | : 9781611970944 |
Linear and nonlinear systems of equations are the basis for many, if not most, of the models of phenomena in science and engineering, and their efficient numerical solution is critical to progress in these areas. This is the first book to be published on nonlinear equations since the mid-1980s. Although it stresses recent developments in this area, such as Newton-Krylov methods, considerable material on linear equations has been incorporated. This book focuses on a small number of methods and treats them in depth. The author provides a complete analysis of the conjugate gradient and generalized minimum residual iterations as well as recent advances including Newton-Krylov methods, incorporation of inexactness and noise into the analysis, new proofs and implementations of Broyden's method, and globalization of inexact Newton methods. Examples, methods, and algorithmic choices are based on applications to infinite dimensional problems such as partial differential equations and integral equations. The analysis and proof techniques are constructed with the infinite dimensional setting in mind and the computational examples and exercises are based on the MATLAB environment.
Author | : Lorenz T. Biegler |
Publisher | : SIAM |
Total Pages | : 411 |
Release | : 2010-01-01 |
Genre | : Science |
ISBN | : 0898719380 |
This book addresses modern nonlinear programming (NLP) concepts and algorithms, especially as they apply to challenging applications in chemical process engineering. The author provides a firm grounding in fundamental NLP properties and algorithms, and relates them to real-world problem classes in process optimization, thus making the material understandable and useful to chemical engineers and experts in mathematical optimization.