Nonlinear Elliptic Boundary Value Problems and Their Applications
Author | : H Begehr |
Publisher | : CRC Press |
Total Pages | : 282 |
Release | : 1996-05-15 |
Genre | : Mathematics |
ISBN | : 9780582292048 |
Download Nonlinear Elliptic Boundary Value Problems And Their Applications full books in PDF, epub, and Kindle. Read online free Nonlinear Elliptic Boundary Value Problems And Their Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : H Begehr |
Publisher | : CRC Press |
Total Pages | : 282 |
Release | : 1996-05-15 |
Genre | : Mathematics |
ISBN | : 9780582292048 |
Author | : Antonio Ambrosetti |
Publisher | : Springer Science & Business Media |
Total Pages | : 203 |
Release | : 2011-07-19 |
Genre | : Mathematics |
ISBN | : 0817681140 |
This self-contained textbook provides the basic, abstract tools used in nonlinear analysis and their applications to semilinear elliptic boundary value problems and displays how various approaches can easily be applied to a range of model cases. Complete with a preliminary chapter, an appendix that includes further results on weak derivatives, and chapter-by-chapter exercises, this book is a practical text for an introductory course or seminar on nonlinear functional analysis.
Author | : Roland Glowinski |
Publisher | : SIAM |
Total Pages | : 473 |
Release | : 2015-11-04 |
Genre | : Mathematics |
ISBN | : 1611973783 |
Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems?addresses computational methods that have proven efficient for the solution of a large variety of nonlinear elliptic problems. These methods can be applied to many problems in science and engineering, but this book focuses on their application to problems in continuum mechanics and physics. This book differs from others on the topic by presenting examples of the power and versatility of operator-splitting methods; providing a detailed introduction to alternating direction methods of multipliers and their applicability to the solution of nonlinear (possibly nonsmooth) problems from science and engineering; and showing that nonlinear least-squares methods, combined with operator-splitting and conjugate gradient algorithms, provide efficient tools for the solution of highly nonlinear problems. The book provides useful insights suitable for advanced graduate students, faculty, and researchers in applied and computational mathematics as well as research engineers, mathematical physicists, and systems engineers.
Author | : Vicentiu D. Radulescu |
Publisher | : Hindawi Publishing Corporation |
Total Pages | : 205 |
Release | : 2008 |
Genre | : Differential equations, Elliptic |
ISBN | : 9774540395 |
This book provides a comprehensive introduction to the mathematical theory of nonlinear problems described by elliptic partial differential equations. These equations can be seen as nonlinear versions of the classical Laplace equation, and they appear as mathematical models in different branches of physics, chemistry, biology, genetics, and engineering and are also relevant in differential geometry and relativistic physics. Much of the modern theory of such equations is based on the calculus of variations and functional analysis. Concentrating on single-valued or multivalued elliptic equations with nonlinearities of various types, the aim of this volume is to obtain sharp existence or nonexistence results, as well as decay rates for general classes of solutions. Many technically relevant questions are presented and analyzed in detail. A systematic picture of the most relevant phenomena is obtained for the equations under study, including bifurcation, stability, asymptotic analysis, and optimal regularity of solutions. The method of presentation should appeal to readers with different backgrounds in functional analysis and nonlinear partial differential equations. All chapters include detailed heuristic arguments providing thorough motivation of the study developed later on in the text, in relationship with concrete processes arising in applied sciences. A systematic description of the most relevant singular phenomena described in this volume includes existence (or nonexistence) of solutions, unicity or multiplicity properties, bifurcation and asymptotic analysis, and optimal regularity. The book includes an extensive bibliography and a rich index, thus allowing for quick orientation among the vast collection of literature on the mathematical theory of nonlinear phenomena described by elliptic partial differential equations.
Author | : C.V. Pao |
Publisher | : Springer Science & Business Media |
Total Pages | : 786 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461530342 |
In response to the growing use of reaction diffusion problems in many fields, this monograph gives a systematic treatment of a class of nonlinear parabolic and elliptic differential equations and their applications these problems. It is an important reference for mathematicians and engineers, as well as a practical text for graduate students.
Author | : Pierre Grisvard |
Publisher | : SIAM |
Total Pages | : 426 |
Release | : 2011-10-20 |
Genre | : Mathematics |
ISBN | : 1611972027 |
Originally published: Boston: Pitman Advanced Pub. Program, 1985.
Author | : István Faragó |
Publisher | : Nova Publishers |
Total Pages | : 424 |
Release | : 2002 |
Genre | : Mathematics |
ISBN | : 9781590333761 |
Numerical Solution of Nonlinear Elliptic Problems Via Preconditioning Operators - Theory & Applications
Author | : Athanasios S. Fokas |
Publisher | : SIAM |
Total Pages | : 290 |
Release | : 2014-12-30 |
Genre | : Mathematics |
ISBN | : 1611973813 |
This book describes state-of-the-art advances and applications of the unified transform and its relation to the boundary element method. The authors present the solution of boundary value problems from several different perspectives, in particular the type of problems modeled by partial differential equations (PDEs). They discuss recent applications of the unified transform to the analysis and numerical modeling of boundary value problems for linear and integrable nonlinear PDEs and the closely related boundary element method, a well-established numerical approach for solving linear elliptic PDEs.? The text is divided into three parts. Part I contains new theoretical results on linear and nonlinear evolutionary and elliptic problems. New explicit solution representations for several classes of boundary value problems are constructed and rigorously analyzed. Part II is a detailed overview of variational formulations for elliptic problems. It places the unified transform approach in a classic context alongside the boundary element method and stresses its novelty. Part III presents recent numerical applications based on the boundary element method and on the unified transform.
Author | : Hervé Le Dret |
Publisher | : Springer |
Total Pages | : 259 |
Release | : 2018-05-25 |
Genre | : Mathematics |
ISBN | : 3319783904 |
This textbook presents the essential parts of the modern theory of nonlinear partial differential equations, including the calculus of variations. After a short review of results in real and functional analysis, the author introduces the main mathematical techniques for solving both semilinear and quasilinear elliptic PDEs, and the associated boundary value problems. Key topics include infinite dimensional fixed point methods, the Galerkin method, the maximum principle, elliptic regularity, and the calculus of variations. Aimed at graduate students and researchers, this textbook contains numerous examples and exercises and provides several comments and suggestions for further study.
Author | : Marius Ghergu |
Publisher | : |
Total Pages | : 0 |
Release | : 2023 |
Genre | : Bifurcation theory |
ISBN | : 9780197727270 |