Nonlinear Dynamics And Chaos With Student Solutions Manual
Download Nonlinear Dynamics And Chaos With Student Solutions Manual full books in PDF, epub, and Kindle. Read online free Nonlinear Dynamics And Chaos With Student Solutions Manual ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Mitchal Dichter |
Publisher | : CRC Press |
Total Pages | : 500 |
Release | : 2018-05-15 |
Genre | : Mathematics |
ISBN | : 0429972636 |
This official Student Solutions Manual includes solutions to the odd-numbered exercises featured in the second edition of Steven Strogatz's classic text Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. The textbook and accompanying Student Solutions Manual are aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. Complete with graphs and worked-out solutions, this manual demonstrates techniques for students to analyze differential equations, bifurcations, chaos, fractals, and other subjects Strogatz explores in his popular book.
Author | : Steven H. Strogatz |
Publisher | : CRC Press |
Total Pages | : 532 |
Release | : 2018-05-04 |
Genre | : Mathematics |
ISBN | : 0429961111 |
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Author | : Steven H. Strogatz |
Publisher | : CRC Press |
Total Pages | : 859 |
Release | : 2018-09-21 |
Genre | : Mathematics |
ISBN | : 0429680155 |
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Author | : Brian Davies |
Publisher | : CRC Press |
Total Pages | : 200 |
Release | : 2018-05-04 |
Genre | : Mathematics |
ISBN | : 0429982496 |
This book presents elements of the theory of chaos in dynamical systems in a framework of theoretical understanding coupled with numerical and graphical experimentation. It describes the theory of fractals, focusing on the importance of scaling and ordinary differential equations.
Author | : J. M. T. Thompson |
Publisher | : John Wiley & Sons |
Total Pages | : 492 |
Release | : 2002-02-15 |
Genre | : Science |
ISBN | : 9780471876847 |
Ein angesehener Bestseller - jetzt in der 2.aktualisierten Auflage! In diesem Buch finden Sie die aktuellsten Forschungsergebnisse auf dem Gebiet nichtlinearer Dynamik und Chaos, einem der am schnellsten wachsenden Teilgebiete der Mathematik. Die seit der ersten Auflage hinzugekommenen Erkenntnisse sind in einem zusätzlichen Kapitel übersichtlich zusammengefasst.
Author | : Kathleen Alligood |
Publisher | : Springer |
Total Pages | : 620 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642592813 |
BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.
Author | : William A. Brock |
Publisher | : MIT Press |
Total Pages | : 362 |
Release | : 1991 |
Genre | : Business & Economics |
ISBN | : 9780262023290 |
Brock, Hsieh, and LeBaron show how the principles of chaos theory can be applied to such areas of economics and finance as the changing structure of stock returns and nonlinearity in foreign exchange.
Author | : Stephen L. Campbell |
Publisher | : Princeton University Press |
Total Pages | : 445 |
Release | : 2011-10-14 |
Genre | : Mathematics |
ISBN | : 1400841321 |
Many textbooks on differential equations are written to be interesting to the teacher rather than the student. Introduction to Differential Equations with Dynamical Systems is directed toward students. This concise and up-to-date textbook addresses the challenges that undergraduate mathematics, engineering, and science students experience during a first course on differential equations. And, while covering all the standard parts of the subject, the book emphasizes linear constant coefficient equations and applications, including the topics essential to engineering students. Stephen Campbell and Richard Haberman--using carefully worded derivations, elementary explanations, and examples, exercises, and figures rather than theorems and proofs--have written a book that makes learning and teaching differential equations easier and more relevant. The book also presents elementary dynamical systems in a unique and flexible way that is suitable for all courses, regardless of length.
Author | : Paul Glendinning |
Publisher | : Cambridge University Press |
Total Pages | : 408 |
Release | : 1994-11-25 |
Genre | : Mathematics |
ISBN | : 9780521425667 |
An introduction to nonlinear differential equations which equips undergraduate students with the know-how to appreciate stability theory and bifurcation.
Author | : Lawrence Perko |
Publisher | : Springer Science & Business Media |
Total Pages | : 530 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1468402498 |
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence bf interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mat!!ematics (TAM). The development of new courses is a natural consequence of a high level of excitement oil the research frontier as newer techniques, such as numerical and symbolic cotnputer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Math ematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface to the Second Edition This book covers those topics necessary for a clear understanding of the qualitative theory of ordinary differential equations and the concept of a dynamical system. It is written for advanced undergraduates and for beginning graduate students. It begins with a study of linear systems of ordinary differential equations, a topic already familiar to the student who has completed a first course in differential equations.