Nonlinear Differential Equations In Ordered Spaces
Download Nonlinear Differential Equations In Ordered Spaces full books in PDF, epub, and Kindle. Read online free Nonlinear Differential Equations In Ordered Spaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : S. Carl |
Publisher | : CRC Press |
Total Pages | : 338 |
Release | : 2000-06-14 |
Genre | : Mathematics |
ISBN | : 9781584880684 |
Extremality results proved in this Monograph for an abstract operator equation provide the theoretical framework for developing new methods that allow the treatment of a variety of discontinuous initial and boundary value problems for both ordinary and partial differential equations, in explicit and implicit forms. By means of these extremality results, the authors prove the existence of extremal solutions between appropriate upper and lower solutions of first and second order discontinuous implicit and explicit ordinary and functional differential equations. They then study the dependence of these extremal solutions on the data. The authors begin by developing an existence theory for an abstract operator equation in ordered spaces and offer new tools for dealing with different kinds of discontinuous implicit and explicit differential equation problems. They present a unified approach to the existence of extremal solutions of quasilinear elliptic and parabolic problems and extend the upper and lower solution method to elliptic and parabolic inclusion of hemivariation type using variational and nonvariational methods. Nonlinear Differential Equations in Ordered Spaces includes research that appears for the first time in book form and is designed as a source book for pure and applied mathematicians. Its self-contained presentation along with numerous worked examples and complete, detailed proofs also make it accessible to researchers in engineering as well as advanced students in these fields.
Author | : Thomas Runst |
Publisher | : Walter de Gruyter |
Total Pages | : 561 |
Release | : 2011-07-22 |
Genre | : Mathematics |
ISBN | : 311081241X |
The series is devoted to the publication of high-level monographs which cover the whole spectrum of current nonlinear analysis and applications in various fields, such as optimization, control theory, systems theory, mechanics, engineering, and other sciences. One of its main objectives is to make available to the professional community expositions of results and foundations of methods that play an important role in both the theory and applications of nonlinear analysis. Contributions which are on the borderline of nonlinear analysis and related fields and which stimulate further research at the crossroads of these areas are particularly welcome. Please submit book proposals to Jürgen Appell.
Author | : Yihong Du |
Publisher | : World Scientific |
Total Pages | : 202 |
Release | : 2006 |
Genre | : Mathematics |
ISBN | : 9812566244 |
The maximum principle induces an order structure for partial differential equations, and has become an important tool in nonlinear analysis. This book is the first of two volumes to systematically introduce the applications of order structure in certain nonlinear partial differential equation problems.The maximum principle is revisited through the use of the Krein-Rutman theorem and the principal eigenvalues. Its various versions, such as the moving plane and sliding plane methods, are applied to a variety of important problems of current interest. The upper and lower solution method, especially its weak version, is presented in its most up-to-date form with enough generality to cater for wide applications. Recent progress on the boundary blow-up problems and their applications are discussed, as well as some new symmetry and Liouville type results over half and entire spaces. Some of the results included here are published for the first time.
Author | : Donal O'Regan |
Publisher | : Springer Science & Business Media |
Total Pages | : 207 |
Release | : 2013-04-17 |
Genre | : Mathematics |
ISBN | : 9401715173 |
We begin our applications of fixed point methods with existence of solutions to certain first order initial initial value problems. This problem is relatively easy to treat, illustrates important methods, and in the end will carry us a good deal further than may first meet the eye. Thus, we seek solutions to Y'. = I(t,y) (1. 1 ) { yeO) = r n where I: I X R n ---+ R and I = [0, b]. We shall seek solutions that are de fined either locally or globally on I, according to the assumptions imposed on I. Notice that (1. 1) is a system of first order equations because I takes its values in Rn. In section 3. 2 we will first establish some basic existence theorems which guarantee that a solution to (1. 1) exists for t > 0 and near zero. Familiar examples show that the interval of existence can be arbi trarily short, depending on the initial value r and the nonlinear behaviour of I. As a result we will also examine in section 3. 2 the dependence of the interval of existence on I and r. We mention in passing that, in the results which follow, the interval I can be replaced by any bounded interval and the initial value can be specified at any point in I. The reasoning needed to cover this slightly more general situation requires minor modifications on the arguments given here.
Author | : Viorel Barbu |
Publisher | : Springer |
Total Pages | : 380 |
Release | : 1976-04-06 |
Genre | : Mathematics |
ISBN | : |
This book is concerned with nonlinear semigroups of contractions in Banach spaces and their application to the existence theory for differential equa tions associated with nonlinear dissipative operators. The study of nonlinear semi groups resulted from the examination of nonlinear parabolic equations and from various nonlinear boundary value problems. The first work done by Y. Komura stimulated much further work and interest in this subject. Thus a series of studies was begun and then continued by T. Kato, M. G. Crandall, A. Pazy, H. Brezis and others, who made important con tributions to the development of the theory. The theory as developed below is a generalisation of the Hille-Yosida theory for one-parameter semigroups of linear operators and is a collection of diversified results unified more or less loosely by their methods of approach. This theory is also closely related to the theory of nonlinear monotone operators. Of course not all aspects of this theory could be covered in our expo sition, and many important contributions to the subject have been excluded for the sake of brevity. We have attempted to present the basic results to the reader and to orient him toward some of the applications. This book is intended to be self-contained. The reader is assumed to have only a basic knowledge of functional analysis, function theory and partial differential equations. Some of the necessary prerequisites for the reading of this 'book are summarized, with or without proof, in Chapter I.
Author | : Harold Thayer Davis |
Publisher | : |
Total Pages | : 590 |
Release | : 1960 |
Genre | : Calculus |
ISBN | : |
Author | : V. Lakshmikantham |
Publisher | : Routledge |
Total Pages | : 544 |
Release | : 2017-09-29 |
Genre | : Mathematics |
ISBN | : 1351430157 |
""Providing the theoretical framework to model phenomena with discontinuous changes, this unique reference presents a generalized monotone iterative method in terms of upper and lower solutions appropriate for the study of discontinuous nonlinear differential equations and applies this method to derive suitable fixed point theorems in ordered abstract spaces.
Author | : S. Carl |
Publisher | : CRC Press |
Total Pages | : 330 |
Release | : 2000-06-14 |
Genre | : Mathematics |
ISBN | : 1482280957 |
Extremality results proved in this Monograph for an abstract operator equation provide the theoretical framework for developing new methods that allow the treatment of a variety of discontinuous initial and boundary value problems for both ordinary and partial differential equations, in explicit and implicit forms. By means of these extremality res
Author | : Ravi P. Agarwal |
Publisher | : Hindawi Publishing Corporation |
Total Pages | : 1266 |
Release | : 2006 |
Genre | : Difference equations |
ISBN | : 9789775945389 |
Author | : Djairo G de Figueiredo |
Publisher | : Springer |
Total Pages | : 465 |
Release | : 2014-06-16 |
Genre | : Mathematics |
ISBN | : 3319042149 |
This volume is a collection of articles presented at the Workshop for Nonlinear Analysis held in João Pessoa, Brazil, in September 2012. The influence of Bernhard Ruf, to whom this volume is dedicated on the occasion of his 60th birthday, is perceptible throughout the collection by the choice of themes and techniques. The many contributors consider modern topics in the calculus of variations, topological methods and regularity analysis, together with novel applications of partial differential equations. In keeping with the tradition of the workshop, emphasis is given to elliptic operators inserted in different contexts, both theoretical and applied. Topics include semi-linear and fully nonlinear equations and systems with different nonlinearities, at sub- and supercritical exponents, with spectral interactions of Ambrosetti-Prodi type. Also treated are analytic aspects as well as applications such as diffusion problems in mathematical genetics and finance and evolution equations related to electromechanical devices.