Nonequilibrium Electrons and Phonons in Superconductors

Nonequilibrium Electrons and Phonons in Superconductors
Author: Armen M. Gulian
Publisher: Springer Science & Business Media
Total Pages: 405
Release: 2005-12-16
Genre: Science
ISBN: 030647087X

This book introduces the main concepts of nonequilibrium phenomena in superconductors. The authors cover both experimentally well-understood topics and problems which physicists could challenge more in view of current theoretical understanding. Some of these topics include thermoelectric phenomena, influence of laser radiation as well as fluctuations in superconductors.

Nonequilibrium Superconductivity, Phonons, and Kapitza Boundaries

Nonequilibrium Superconductivity, Phonons, and Kapitza Boundaries
Author: Kenneth E. Gray
Publisher: Springer Science & Business Media
Total Pages: 702
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1468439359

The importance of phonons has long been recognized by research ers in nonequilibrium superconductivity. Similarly, experimentalists studying phonons at low temperatures have relied heavily on supercon ductors as sources and detectors. To a large extent this symbiotic relationship has developed with a general mutual awareness; however, to our knowledge these subjects have never been treated together in conferences or study institutes. It was with the hope of further contributing to the awareness and communication between workers in these areas that this NATO Advanced Study Institute (ASI) has been conceived. A second, but equally important, reason for holding this ASI is to fill a void by providing the first general textbook in this important area of physics. Therefore, there was an emphasis on the tutorial nature of the lectures and written contributions to this textbook. It should not go unnoticed that the experimental and theoretical concepts covered in this textbook are of paramount importance to the various applications of superconductors. Almost by definition, the use of a superconductor implies a nonequilibrium state! For example, phonon conduction to the helium bath is important in devices ranging from microscopic Josephson junctions to large scale magnets and transmission lines. Knowledge of the more fundamental nonequilibrium effects can aid in our understanding of devices as well as provide the potential for entirely new applications.

Spectroscopy of Nonequilibrium Electrons and Phonons

Spectroscopy of Nonequilibrium Electrons and Phonons
Author: C.V. Shank
Publisher: Elsevier
Total Pages: 513
Release: 2012-12-02
Genre: Science
ISBN: 0444600574

The physics of nonequilibrium electrons and phonons in semiconductors is an important branch of fundamental physics that has many practical applications, especially in the development of ultrafast and ultrasmall semiconductor devices. This volume is devoted to different trends in the field which are presently at the forefront of research. Special attention is paid to the ultrafast relaxation processes in bulk semiconductors and two-dimensional semiconductor structures, and to their study by different spectroscopic methods, both pulsed and steady-state. The evolution of energy and space distribution of nonequilibrium electrons and the relaxation kinetics of hot carriers and phonons are considered under various conditions such as temperature, doping and pumping intensity by leading experts in the field.

Shortcut to Superconductivity

Shortcut to Superconductivity
Author: Armen Gulian
Publisher: Springer Nature
Total Pages: 288
Release: 2020-07-11
Genre: Technology & Engineering
ISBN: 303023486X

This accessible textbook offers a novel, concept-led approach to superconducting electronics, using the COMSOL Multiphysics software to help describe fundamental principles in an intuitive manner. Based on a course taught by the author and aimed primarily at engineering students, the book explains concepts effectively and efficiently, uncovering the “shortcut” to understanding each topic, enabling readers to quickly grasp the underlying essence. The book is divided into two main parts; the first part provides a general introduction to key topics encountered in superconductivity, illustrated using COMSOL simulations based on time-dependent Ginzburg-Landau equations and avoiding any deeply mathematical derivations. It includes numerous worked examples and problem sets with tips and solutions. The second part of the book is more conventional in nature, providing detailed derivations of the basic equations from first principles. This part covers more advanced topics, including the BCS-Gor'kov-Eliashberg approach to equilibrium properties of superconductors, the derivation of kinetic equations for nonequilibrium superconductors, and the derivation of time-dependent Ginzburg–Landau equations, used as the basis for COMSOL modeling in the first part. Supported throughout by an extensive library of COMSOL Multiphysics animations, the book serves as a uniquely accessible introduction to the field for engineers and others with a less rigorous background in physics and mathematics. However, it also features more detailed mathematical background for those wishing to delve further into the subject.

Superconductors at the Nanoscale

Superconductors at the Nanoscale
Author: Roger Wördenweber
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 590
Release: 2017-09-11
Genre: Science
ISBN: 3110456249

By covering theory, design, and fabrication of nanostructured superconducting materials, this monograph is an invaluable resource for research and development. Examples are energy saving solutions, healthcare, and communication technologies. Key ingredients are nanopatterned materials which help to improve the superconducting critical parameters and performance of superconducting devices, and lead to novel functionalities. Contents Tutorial on nanostructured superconductors Imaging vortices in superconductors: from the atomic scale to macroscopic distances Probing vortex dynamics on a single vortex level by scanning ac-susceptibility microscopy STM studies of vortex cores in strongly confined nanoscale superconductors Type-1.5 superconductivity Direct visualization of vortex patterns in superconductors with competing vortex-vortex interactions Vortex dynamics in nanofabricated chemical solution deposition high-temperature superconducting films Artificial pinning sites and their applications Vortices at microwave frequencies Physics and operation of superconducting single-photon devices Josephson and charging effect in mesoscopic superconducting devices NanoSQUIDs: Basics & recent advances Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks as emitters of terahertz radiation| Interference phenomena in superconductor-ferromagnet hybrids Spin-orbit interactions, spin currents, and magnetization dynamics in superconductor/ferromagnet hybrids Superconductor/ferromagnet hybrids

Shortcut to Superconductivity

Shortcut to Superconductivity
Author: Armen Gulian
Publisher: Springer
Total Pages: 276
Release: 2020-08-14
Genre: Technology & Engineering
ISBN: 9783030234850

This accessible textbook offers a novel, concept-led approach to superconducting electronics, using the COMSOL Multiphysics software to help describe fundamental principles in an intuitive manner. Based on a course taught by the author and aimed primarily at engineering students, the book explains concepts effectively and efficiently, uncovering the “shortcut” to understanding each topic, enabling readers to quickly grasp the underlying essence. The book is divided into two main parts; the first part provides a general introduction to key topics encountered in superconductivity, illustrated using COMSOL simulations based on time-dependent Ginzburg-Landau equations and avoiding any deeply mathematical derivations. It includes numerous worked examples and problem sets with tips and solutions. The second part of the book is more conventional in nature, providing detailed derivations of the basic equations from first principles. This part covers more advanced topics, including the BCS-Gor'kov-Eliashberg approach to equilibrium properties of superconductors, the derivation of kinetic equations for nonequilibrium superconductors, and the derivation of time-dependent Ginzburg–Landau equations, used as the basis for COMSOL modeling in the first part. Supported throughout by an extensive library of COMSOL Multiphysics animations, the book serves as a uniquely accessible introduction to the field for engineers and others with a less rigorous background in physics and mathematics. However, it also features more detailed mathematical background for those wishing to delve further into the subject.

Advances in Superconductivity VI

Advances in Superconductivity VI
Author: Toshizo Fujita
Publisher: Springer Science & Business Media
Total Pages: 1359
Release: 2012-12-06
Genre: Science
ISBN: 443168266X

More than seven years have passed since the dramatic breakthrough in the critical temperature for superconductors. During this period, a host of new materials have been discovered, and efforts have been stepped up in a variety of domains including device and systems applications, commercialization, and basic research on the properties of superconductive materials. Recent progress in areas such as bulk single crystal production, long-scale wire and tape produc tion, flywheel and bearing applications, and electronic device applications for thin films indicate that science and technology have been working hand in hand in this field, as has been the case in the research and development of semi conductors. This interdisciplinary "resonance" will be certain to lead to further outstanding advances in the years to come. It goes without saying that worldwide information exchange is the key to accelerating progress in superconductivity science and technology. As in previous years, the ISS '93 served as a venue where visions of future develop ments were shared in addition to presentations and extensive discussions on the most up-to-date research results. I hope that the Proceedings contained in this volume will be consulted not only as a summary of the current "state of the art" in high-Tc superconductivity but also as a stimulating source of ideas regarding future applications of superconductivity research.