Non-Riemannian Geometry

Non-Riemannian Geometry
Author: Luther Pfahler Eisenhart
Publisher: American Mathematical Soc.
Total Pages: 194
Release: 1972
Genre: Mathematics
ISBN: 0821810081

The use of the differential geometry of a Riemannian space in the mathematical formulation of physical theories led to important developments in the geometry of such spaces. The concept of parallelism of vectors, as introduced by Levi-Civita, gave rise to a theory of the affine properties of a Riemannian space. Covariant differentiation, as developed by Christoffel and Ricci, is a fundamental process in this theory. Various writers, notably Eddington, Einstein and Weyl, in their efforts to formulate a combined theory of gravitation and electromagnetism, proposed a simultaneous generalization o.

Metric Structures for Riemannian and Non-Riemannian Spaces

Metric Structures for Riemannian and Non-Riemannian Spaces
Author: Mikhail Gromov
Publisher: Springer Science & Business Media
Total Pages: 594
Release: 2007-06-25
Genre: Mathematics
ISBN: 0817645837

This book is an English translation of the famous "Green Book" by Lafontaine and Pansu (1979). It has been enriched and expanded with new material to reflect recent progress. Additionally, four appendices, by Gromov on Levy's inequality, by Pansu on "quasiconvex" domains, by Katz on systoles of Riemannian manifolds, and by Semmes overviewing analysis on metric spaces with measures, as well as an extensive bibliography and index round out this unique and beautiful book.

On the Hypotheses Which Lie at the Bases of Geometry

On the Hypotheses Which Lie at the Bases of Geometry
Author: Bernhard Riemann
Publisher: Birkhäuser
Total Pages: 181
Release: 2016-04-19
Genre: Mathematics
ISBN: 3319260421

This book presents William Clifford’s English translation of Bernhard Riemann’s classic text together with detailed mathematical, historical and philosophical commentary. The basic concepts and ideas, as well as their mathematical background, are provided, putting Riemann’s reasoning into the more general and systematic perspective achieved by later mathematicians and physicists (including Helmholtz, Ricci, Weyl, and Einstein) on the basis of his seminal ideas. Following a historical introduction that positions Riemann’s work in the context of his times, the history of the concept of space in philosophy, physics and mathematics is systematically presented. A subsequent chapter on the reception and influence of the text accompanies the reader from Riemann’s times to contemporary research. Not only mathematicians and historians of the mathematical sciences, but also readers from other disciplines or those with an interest in physics or philosophy will find this work both appealing and insightful.

Some Nonlinear Problems in Riemannian Geometry

Some Nonlinear Problems in Riemannian Geometry
Author: Thierry Aubin
Publisher: Springer Science & Business Media
Total Pages: 414
Release: 2013-03-09
Genre: Mathematics
ISBN: 3662130068

This book deals with such important subjects as variational methods, the continuity method, parabolic equations on fiber bundles, ideas concerning points of concentration, blowing-up technique, geometric and topological methods. It explores important geometric problems that are of interest to many mathematicians and scientists but have only recently been partially solved.

An Introduction to Riemannian Geometry

An Introduction to Riemannian Geometry
Author: Leonor Godinho
Publisher: Springer
Total Pages: 476
Release: 2014-07-26
Genre: Mathematics
ISBN: 3319086669

Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.

Geometry IV

Geometry IV
Author: Yurĭi Grigorevǐc Reshetnyak
Publisher: Springer Science & Business Media
Total Pages: 274
Release: 1993-10-14
Genre: Mathematics
ISBN: 9783540547013

This book contains two surveys on modern research into non-regular Riemannian geometry, carried out mostly by Russian mathematicians. Coverage examines two-dimensional Riemannian manifolds of bounded curvature and metric spaces whose curvature lies between two given constants. This book will be immensely useful to graduate students and researchers in geometry, in particular Riemannian geometry.

Semi-Riemannian Geometry With Applications to Relativity

Semi-Riemannian Geometry With Applications to Relativity
Author: Barrett O'Neill
Publisher: Academic Press
Total Pages: 483
Release: 1983-07-29
Genre: Mathematics
ISBN: 0080570577

This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For many years these two geometries have developed almost independently: Riemannian geometry reformulated in coordinate-free fashion and directed toward global problems, Lorentz geometry in classical tensor notation devoted to general relativity. More recently, this divergence has been reversed as physicists, turning increasingly toward invariant methods, have produced results of compelling mathematical interest.

Non-Riemannian Geometry

Non-Riemannian Geometry
Author: Luther Pfahler Eisenhart
Publisher: Courier Corporation
Total Pages: 196
Release: 2012-01-27
Genre: Mathematics
ISBN: 0486154637

This concise text by a prominent mathematician deals chiefly with manifolds dominated by the geometry of paths. Topics include asymmetric and symmetric connections, the projective geometry of paths, and the geometry of sub-spaces. 1927 edition.

A Panoramic View of Riemannian Geometry

A Panoramic View of Riemannian Geometry
Author: Marcel Berger
Publisher: Springer Science & Business Media
Total Pages: 835
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642182453

This book introduces readers to the living topics of Riemannian Geometry and details the main results known to date. The results are stated without detailed proofs but the main ideas involved are described, affording the reader a sweeping panoramic view of almost the entirety of the field. From the reviews "The book has intrinsic value for a student as well as for an experienced geometer. Additionally, it is really a compendium in Riemannian Geometry." --MATHEMATICAL REVIEWS