Non-Linear Theory and Fluctuations

Non-Linear Theory and Fluctuations
Author: A. I. Akhiezer
Publisher: Elsevier
Total Pages: 320
Release: 2017-03-22
Genre: Science
ISBN: 1483148076

Plasma Electrodynamics, Volume 2: Non-Linear Theory and Fluctuations deals with the theory of nonlinear waves in a collisionless plasma, including the quasilinear theory, the theory of plasma turbulence, and the theory of electromagnetic fluctuations in a plasma. Topics covered range from nonlinear high-frequency waves in a cold plasma to the theory of plasma oscillations in the quasilinear approximation. Nonlinear wave-particle interactions are also discussed, along with scattering and transformation of waves in a plasma. Comprised of six chapters, this volume begins with a study of nonlinear waves in a collisionless plasma, focusing on nonlinear high-frequency waves in a cold plasma; Langmuir waves in a non-relativistic plasma; and longitudinal, transverse, and coupled longitudinal-transverse waves in a relativistic plasma. After expounding on the quasilinear theory, which describes the effects of the first approximation in terms of the plasma wave energy, the nonlinear interaction of waves and particles is considered. The last three chapters explore the theory of electromagnetic fluctuations in a plasma; the theory of scattering processes and the transformation of waves in a plasma; and the scattering of charged particles in a plasma. The polarization energy losses when charged particles move in a plasma are calculated. This book will be of interest to physicists.

Plasma Electrodynamics

Plasma Electrodynamics
Author: A. I. Akhiezer
Publisher: Elsevier
Total Pages: 433
Release: 2017-03-22
Genre: Science
ISBN: 1483152154

Plasma Electrodynamics, Volume 1: Linear Theory is a seven-chapter book that begins with a description of the general methods of describing plasma, particularly, kinetic and hydrodynamic methods. Chapter 2 discusses the linear theory of magneto-hydrodynamic waves. Chapter 3 describes the non-linear magneto-hydrodynamic waves, both simple waves and shock waves. Subsequent chapters explain the high-frequency oscillations in an unmagnetized plasma; oscillations of a plasma in a magnetic field; and interaction between charged particle beams and a plasma. The last chapter details the oscillations of a partially ionized plasma.

Nonlinear Nonequilibrium Thermodynamics I

Nonlinear Nonequilibrium Thermodynamics I
Author: Rouslan L. Stratonovich
Publisher: Springer Science & Business Media
Total Pages: 376
Release: 2012-12-06
Genre: Science
ISBN: 3642773435

This book gives the first detailed coherent treatment of a relatively young branch of statistical physics - nonlinear nonequilibrium and fluctuation-dissipative thermo dynamics. This area of research has taken shape fairly recently: its development began in 1959. The earlier theory -linear nonequilibrium thermodynamics - is in principle a simple special case of the new theory. Despite the fact that the title of this book includes the word "nonlinear", it also covers the results of linear nonequilibrium thermodynamics. The presentation of the linear and nonlinear theories is done within a common theoretical framework that is not subject to the linearity condition. The author hopes that the reader will perceive the intrinsic unity of this discipline, and the uniformity and generality of its constituent parts. This theory has a wide variety of applications in various domains of physics and physical chemistry, enabling one to calculate thermal fluctuations in various nonlinear systems. The book is divided into two volumes. Fluctuation-dissipation theorems (or relations) of various types (linear, quadratic and cubic, classical and quantum) are considered in the first volume. Here one encounters the Markov and non-Markov fluctuation-dissipation theorems (FDTs), theorems of the first, second and third kinds. Nonlinear FDTs are less well known than their linear counterparts.

Non-Linear Transformations of Stochastic Processes

Non-Linear Transformations of Stochastic Processes
Author: P. I. Kuznetsov
Publisher: Elsevier
Total Pages: 515
Release: 2014-05-12
Genre: Mathematics
ISBN: 1483282686

Non-Linear Transformations of Stochastic Processes focuses on the approaches, methodologies, transformations, and computations involved in the non-linear transformations of stochastic processes. The selection first underscores some problems of the theory of stochastic processes and the transmission of random functions through non-linear systems. Discussions focus on the transformation of moment functions for the general non-linear transformation; conversion formulas for correlation functions; transformation of moment functions for the simplest type of non-linear transformation; and normalization of the linear system of probability distribution laws. The text then ponders on quasi-moment functions in the theory of random processes and correlation functions in the theory of the Brownian motion generalization of the Fokker-Planck equation. The manuscript elaborates on the correlation functions of random sequences of rectangular pulses; method of determining the envelope of quasi-harmonic fluctuations; and the problem of measuring electrical fluctuations with the aid of thermoelectric devices. The book then examines the effect of signal and noise on non-linear elements and the approximate method of calculating the correlation function of stochastic signals. The selection is a dependable source of information for researchers interested in the non-linear transformations of stochastic processes.

Fluctuations and Non-Linear Wave Interactions in Plasmas

Fluctuations and Non-Linear Wave Interactions in Plasmas
Author: A. G. Sitenko
Publisher: Elsevier
Total Pages: 279
Release: 2016-09-20
Genre: Science
ISBN: 1483189392

Fluctuations and Non-linear Wave Interactions in Plasmas talks about a theory of fluctuations in a homogenous plasma. The title takes into consideration non-linear wave interactions. The text first presents the statistical description of plasma, and then proceeds to covering non-linear electrodynamic equations. Next, the selection deals with the electrodynamic properties of magento-active plasma and waves in plasma. The text also tackles non-linear wave interactions, along with fluctuations in plasmas. The next chapter talks about the effect of non-linear wave interaction on fluctuations in a plasma. Chapter 8 details fluctuation-dissipation theorem, while Chapter 9 discusses kinetic equations. The tenth chapter covers the scattering and radiation of waves and the last chapter tackles wave interaction in semi-bounded plasma. The book will be of great use to scientists and professionals who deals with plasmas.

Nonlinear Dynamics in Equilibrium Models

Nonlinear Dynamics in Equilibrium Models
Author: John Stachurski
Publisher: Springer Science & Business Media
Total Pages: 454
Release: 2012-01-25
Genre: Business & Economics
ISBN: 3642223974

Optimal growth theory studies the problem of efficient resource allocation over time, a fundamental concern of economic research. Since the 1970s, the techniques of nonlinear dynamical systems have become a vital tool in optimal growth theory, illuminating dynamics and demonstrating the possibility of endogenous economic fluctuations. Kazuo Nishimura's seminal contributions on business cycles, chaotic equilibria and indeterminacy have been central to this development, transforming our understanding of economic growth, cycles, and the relationship between them. The subjects of Kazuo's analysis remain of fundamental importance to modern economic theory. This book collects his major contributions in a single volume. Kazuo Nishimura has been recognized for his contributions to economic theory on many occasions, being elected fellow of the Econometric Society and serving as an editor of several major journals. Chapter “Introduction” is available open access under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License via link.springer.com.

Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos
Author: Steven H. Strogatz
Publisher: CRC Press
Total Pages: 532
Release: 2018-05-04
Genre: Mathematics
ISBN: 0429961111

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

Linear and Nonlinear Waves

Linear and Nonlinear Waves
Author: G. B. Whitham
Publisher: John Wiley & Sons
Total Pages: 660
Release: 2011-10-18
Genre: Science
ISBN: 1118031202

Now in an accessible paperback edition, this classic work is just as relevant as when it first appeared in 1974, due to the increased use of nonlinear waves. It covers the behavior of waves in two parts, with the first part addressing hyperbolic waves and the second addressing dispersive waves. The mathematical principles are presented along with examples of specific cases in communications and specific physical fields, including flood waves in rivers, waves in glaciers, traffic flow, sonic booms, blast waves, and ocean waves from storms.

Averaging Methods in Nonlinear Dynamical Systems

Averaging Methods in Nonlinear Dynamical Systems
Author: Jan A. Sanders
Publisher: Springer Science & Business Media
Total Pages: 259
Release: 2013-04-17
Genre: Mathematics
ISBN: 1475745753

In this book we have developed the asymptotic analysis of nonlinear dynamical systems. We have collected a large number of results, scattered throughout the literature and presented them in a way to illustrate both the underlying common theme, as well as the diversity of problems and solutions. While most of the results are known in the literature, we added new material which we hope will also be of interest to the specialists in this field. The basic theory is discussed in chapters two and three. Improved results are obtained in chapter four in the case of stable limit sets. In chapter five we treat averaging over several angles; here the theory is less standardized, and even in our simplified approach we encounter many open problems. Chapter six deals with the definition of normal form. After making the somewhat philosophical point as to what the right definition should look like, we derive the second order normal form in the Hamiltonian case, using the classical method of generating functions. In chapter seven we treat Hamiltonian systems. The resonances in two degrees of freedom are almost completely analyzed, while we give a survey of results obtained for three degrees of freedom systems. The appendices contain a mix of elementary results, expansions on the theory and research problems.

Electrothermal Oscillations and the Quasi-linear Theory of Electron Enthalpy Fluctuations in Magnetohydrodynamic Generators and Magnetoplasmadynamic Arc Thrusters

Electrothermal Oscillations and the Quasi-linear Theory of Electron Enthalpy Fluctuations in Magnetohydrodynamic Generators and Magnetoplasmadynamic Arc Thrusters
Author: J. Marlin Smith
Publisher:
Total Pages: 50
Release: 1972
Genre: Electric power production
ISBN:

Flucturations in electron density and temperature coupled through OHM's Law are studied for MHD power generator and MPD arc thruster applications. The dispersion relation based on linear theory is derived, and the two limiting cases of infinite ionization rate and frozen flow are examined. The nonlinear effects of the frozen flow case are then studied in the quasilinear limit. Equations are derived for the amplitude of the fluctuation and its effect upon Ohm's Law and the electron temperature equation. Conditions under which a steady state can exist in the presence of the fluctuation are examined, and effective transport properties are determined.