Noble Metal-Metal Oxide Hybrid Nanoparticles

Noble Metal-Metal Oxide Hybrid Nanoparticles
Author: Satyabrata Mohapatra
Publisher: Elsevier
Total Pages: 675
Release: 2018-10-11
Genre: Technology & Engineering
ISBN: 0128141352

Noble Metal-Metal Oxide Hybrid Nanoparticles: Fundamentals and Applications sets out concepts and emerging applications of hybrid nanoparticles in biomedicine, antibacterial, energy storage and electronics. The hybridization of noble metals (Gold, Silver, Palladium and Platinum) with metal-oxide nanoparticles exhibits superior features when compared to individual nanoparticles. In some cases, metal oxides act as semiconductors, such as nano zinc oxide or titanium oxide nanoparticles, where their hybridization with silver nanoparticles, enhanced significantly their photocatalytic efficiency. The book highlights how such nanomaterials are used for practical applications. - Examines the properties of metal-metal oxide hybrid nanoparticles that make them so adaptable - Explores the mechanisms by which nanoparticles interact with each other, showing how these can be exploited for practical applications - Shows how metal oxide hybrid nanomaterials are used in a range of industry sectors, including energy, the environment and healthcare

Metal Oxide Nanocomposites

Metal Oxide Nanocomposites
Author: B. Raneesh
Publisher: John Wiley & Sons
Total Pages: 432
Release: 2021-02-17
Genre: Technology & Engineering
ISBN: 1119363578

Metal Oxide Nanocomposites: Synthesis and Applications summarizes many of the recent research accomplishments in the area of metal oxide-based nanocomposites. This book focussing on the following topics: Nanocomposites preparation and characterization of metal oxide nanocomposites; synthesis of core/shell metal oxide nanocomposites; multilayer thin films; sequential assembly of nanocomposite materials; semiconducting polymer metal oxide nanocomposites; graphene-based metal and metal oxide nanocomposites; carbon nanotube–metal–oxide nanocomposites; silicon mixed oxide nanocomposites; gas semiconducting sensors based on metal oxide nanocomposites; metal ]organic framework nanocomposite for hydrogen production and nanocomposites application towards photovoltaic and photocatalytic.

Magnetic Nanoparticle-Based Hybrid Materials

Magnetic Nanoparticle-Based Hybrid Materials
Author: Andrea Ehrmann
Publisher: Woodhead Publishing
Total Pages: 761
Release: 2021-06-23
Genre: Technology & Engineering
ISBN: 0128236892

Magnetic Nanoparticle-Based Hybrid Materials: Fundamentals and Applications introduces the principles, properties, and emerging applications of this important materials system. The hybridization of magnetic nanoparticles with metals, metal oxides and semiconducting nanoparticles may result in superior properties. The book reviews the most relevant hybrid materials, their mechanisms and properties. Then, the book focuses on the rational design, controlled synthesis, advanced characterizations and in-depth understanding of structure-property relationships. The last part addresses the promising applications of hybrid nanomaterials in the real world such as in the environment, energy, medicine fields. Magnetic Nanoparticle-Based Hybrid Materials: Fundamentals and Applications comprehensively reviews both the theoretical and experimental approaches used to rapidly advance nanomaterials that could result in new technologies that impact day-to-day life and society in key areas such as health and the environment. It is suitable for researchers and practitioners who are materials scientists and engineers, chemists or physicists in academia and R&D. - Provides in-depth information on the basic principles of magnetic nanoparticles-based hybrid materials such as synthesis, characterization, properties, and magnon interactions - Discusses the most relevant hybrid materials systems including integration of metals, metal oxides, polymers, carbon and more - Addresses the emerging applications in medicine, the environment, energy, sensing, and computing enabled by magnetic nanoparticles-based hybrid materials

Nanosensor Technologies for Environmental Monitoring

Nanosensor Technologies for Environmental Monitoring
Author: Inamuddin
Publisher: Springer Nature
Total Pages: 529
Release: 2020-07-15
Genre: Science
ISBN: 303045116X

Advanced materials and nanotechnology is a promising, emerging field involving the use of nanoparticles to facilitate the detection of various physical and chemical parameters, including temperature, humidity, pH, metal ion, anion, small organic or inorganic molecules, gases, and biomolecules responsible for environmental issues that can lead to diseases like cancer, diabetes, osteoarthritis, bacterial infections, and brain, retinal, and cardiovascular diseases. By monitoring environmental samples and detecting these environmental issues, advanced nanotechnology in this type of sensory technology is able to improve daily quality of life. Although these sensors are commercially available for the detection of monovalent cations, anions, gases, volatile organic molecules, heavy metal ions, and toxic metal ions, many existing models require significant power and lack advanced technology for more quality selectivity and sensitivity. There is room in these sensors to optimize their selectivity, reversibility, on/off ratio, response time, and their environmental stability in real-world operating conditions. This book explores the methods for the development and design of environmentally-friendly, simple, reliable, and cost effective electrochemical nanosensors using powerful nanostructured materials. More specifically, it highlights the use of various electrochemical-based biosensor sensors involved in the detection of monovalent cations, anions, gases, volatile organic molecules, heavy metal ions, and toxic metal ions, with the ultimate goal of seeing these technologies reach market.

Metal Oxides for Biomedical and Biosensor Applications

Metal Oxides for Biomedical and Biosensor Applications
Author: Kunal Mondal
Publisher: Elsevier
Total Pages: 633
Release: 2021-12-04
Genre: Technology & Engineering
ISBN: 0128230584

Metal Oxides for Biomedical and Biosensor Applications gives an in-depth overview of the emerging research in the biomedical and biosensing applications of metal oxides, including optimization of their surface and bulk properties. Sections cover biomedical applications of metal oxides for use in cell cultures, antibacterial and antimicrobial treatments, dental applications, drug delivery, cancer therapy, immunotherapy, photothermal therapy, tissue engineering, and metal oxide-based biosensor development. As advanced and biofunctionalized nano/micro structured metal oxides are finding applications in microfluidics, optical sensors, electrochemical sensors, DNA-based biosensing, imaging, diagnosis and analysis, this book provides a comprehensive update on the topic. Additional sections cover research challenges, technology limitations, and future trends in metal oxides and their composites regarding their usage in biomedical applications. - Includes an overview of the important applications of metal oxides for biomedical and biosensing technologies - Addresses the relationship between material properties, such as structure, morphology, composition and performance - Reviews the design and fabrication strategies of metal oxides for use in medical and biosensing applications

Catalysis by Precious Metals, Past and Future

Catalysis by Precious Metals, Past and Future
Author: Marcela Martinez Tejada
Publisher: MDPI
Total Pages: 204
Release: 2020-04-15
Genre: Technology & Engineering
ISBN: 3039287222

The future of the precious metals is shiny and resistant. Although expensive and potentially replaceable by transition metal catalysts, precious metal implementation in research and industry shows potential. These metals catalyze oxidation and hydrogenation due to their dissociative behavior toward hydrogen and oxygen, dehydrogenation, isomerization, and aromatization, etc. The precious metal catalysts, especially platinum-based catalysts, are involved in a variety of industrial processes. Examples include Pt–Rh gauze for nitric acid production, the Pt/Al2O3 catalyst for cyclohexane and propylene production, and Pd/Al2O3 catalysts for petrochemical hydropurification reactions, etc. A quick search of the number of published articles in the last five years containing a combination of corresponding “metals” (Pt, Pd, Ru, Rh and Au) and “catalysts” as keywords indicates the importance of the Pt catalysts, but also the continuous increase in the contribution of Pd and Au. This Special Issue reveals the importance of precious metals in catalysis and focuses on mono- and bi-metallic formulations of any supported precious metals and their promotional catalytic effect of other transition metals. The application of precious metals in diverse reactions, either homogeneous or heterogeneous, and studies of the preparation, characterization, and applications of the supported precious metal catalysts, are presented.

Hybrid Nanofillers for Polymer Reinforcement

Hybrid Nanofillers for Polymer Reinforcement
Author: Sabu Thomas
Publisher: Elsevier
Total Pages: 609
Release: 2024-08-12
Genre: Science
ISBN: 0323991408

Hybrid Nanofillers for Polymer Reinforcement: Synthesis, Assembly, Characterization, and Applications provides a targeted approach to hybrid nanostructures, enabling the development of these advanced nanomaterials for specific applications. The book begins by reviewing the status of hybrid nanostructures, their current applications, and future opportunities. This is followed by chapters examining synthesis and characterization techniques, as well as interactions within nanohybrid systems. The second part of the book provides detailed chapters each highlighting a particular application area and discussing the preparation of various hybrid nano systems that can potentially be utilized in that area. The last chapters turn towards notable state-of-the-art hybrid nanomaterials and their properties and applications. This book is a valuable resource for researchers and advanced students across polymer science, nanotechnology, rubber technology, chemistry, sustainable materials, and materials engineering, as well as scientists, engineers, and R&D professionals with an interest in hybrid nanostructures or advanced nanomaterials for a industrial application. - Provides synthesis methods, characterization techniques, and structure-property analysis for hybrid nanostructures - Offers in-depth coverage that focuses on specific applications across energy storage, environment, automotive, aerospace, construction and biomedicine - Includes the latest novel areas, such as elastomeric hybrid nano systems, hybrid ceramic polymer nanocomposites, and self-assembled structures

Metal Oxide Nanocomposites

Metal Oxide Nanocomposites
Author: B. Raneesh
Publisher: John Wiley & Sons
Total Pages: 432
Release: 2021-01-08
Genre: Technology & Engineering
ISBN: 1119364736

Metal Oxide Nanocomposites: Synthesis and Applications summarizes many of the recent research accomplishments in the area of metal oxide-based nanocomposites. This book focussing on the following topics: Nanocomposites preparation and characterization of metal oxide nanocomposites; synthesis of core/shell metal oxide nanocomposites; multilayer thin films; sequential assembly of nanocomposite materials; semiconducting polymer metal oxide nanocomposites; graphene-based metal and metal oxide nanocomposites; carbon nanotube–metal–oxide nanocomposites; silicon mixed oxide nanocomposites; gas semiconducting sensors based on metal oxide nanocomposites; metal9;]organic framework nanocomposite for hydrogen production and nanocomposites application towards photovoltaic and photocatalytic.

Smart Nanoconcretes and Cement-Based Materials

Smart Nanoconcretes and Cement-Based Materials
Author: Mohd Shahir Liew
Publisher: Elsevier
Total Pages: 726
Release: 2019-11-16
Genre: Technology & Engineering
ISBN: 0128178558

Smart Nanoconcretes and Cement-Based Materials: Properties, Modelling and Applications explores the fundamental concepts and applications of smart nanoconcretes with self-healing, self-cleaning, photocatalytic, antibacterial, piezoelectrical, heating and conducting properties and how they are used in modern high-rise buildings, hydraulic engineering, highways, tunnels and bridges. This book is an important reference source for materials scientists and civil engineers who are looking to enhance the properties of smart nanomaterials to create stronger, more durable concrete. - Explores the mechanisms through which active agents are released from nanocontainers inside concrete - Shows how embedded smart nanosensors, including carbon cement-based smart sensors and micro/nano strain-sensors, are used to increase concrete performance - Discusses the major challenges of integrating smart nanomaterials into concrete composites