Next Generation Multilayer Graded Bandgap Solar Cells

Next Generation Multilayer Graded Bandgap Solar Cells
Author: A. A. Ojo
Publisher: Springer
Total Pages: 262
Release: 2018-08-16
Genre: Technology & Engineering
ISBN: 3319966677

This book will guide Photovoltaics researchers in a new way of thinking about harvesting light energy from all wavelengths of the solar spectrum. It closes the gap between general solar cells books and photovoltaics journal articles, by focusing on the latest developments in our understanding of solid-state device physics. The material presented is experimental and based on II-VI thin-film materials, mainly CdTe-based solar cells. The authors describe the use of new device design, based on multilayer graded bandgap configuration, using CdTe-based solar cells. The authors also explain how the photo-generated currents can be enhanced using multi-step charge carrier production. The possibility of fabricating these devices using low-cost and scalable electroplating is demonstrated. The value of electroplating for large area electronic devices such as PV solar panels, display devices and nano-technology devices are also demonstrated. By enabling new understanding of the engineering of electroplated semiconductor materials and providing an overview of the semiconductor physics and technology, this practical book is ideal to guide researchers, engineers, and manufacturers on future solar cell device designs and fabrications. Discusses in detail the processes of growths, treatments, solar cell device fabrication and solid state physics, improving readers’ understanding of fundamental solid state physics; Enables future improvements in CdTe-based device efficiency; Explains the significance of defects in deposited semiconductor materials and interfaces that affect the material properties and resulting device performance.

Green Sustainable Process for Chemical and Environmental Engineering and Science

Green Sustainable Process for Chemical and Environmental Engineering and Science
Author: Rajender Boddula
Publisher: Elsevier
Total Pages: 432
Release: 2021-03-18
Genre: Technology & Engineering
ISBN: 0128225564

Green Sustainable Process for Chemical and Environmental Engineering and Science: Solid State Synthetic Methods cover recent advances made in the field of solid-state materials synthesis and its various applications. The book provides a brief introduction to the topic and the fundamental principles governing the various methods. Sustainable techniques and green processes development in solid-state chemistry are also highlighted. This book also provides a comprehensive literature on the industrial application using solid-state materials and solid-state devices. Overall, this book is intended to explore green solid-state techniques, eco-friendly materials involved in organic synthesis and real-time applications. - Provides a broad overview of solid-state chemistry - Outlines an eco-friendly solid-state synthesis of modern nanomaterials, organometallic, coordination compounds and pure organic - Gives a detailed account of solid-state chemistry, fundamentals, concepts, techniques and applications - Deliberates cutting-edge recent advances in industrial technologies involved in energy, environmental, medicinal and organic chemistry fields

Advances in Thin-Film Solar Cells

Advances in Thin-Film Solar Cells
Author: I. M. Dharmadasa
Publisher: CRC Press
Total Pages: 286
Release: 2018-09-05
Genre: Science
ISBN: 0429668392

Solar energy conversion plays a very important role in the rapid introduction of renewable energy, which is essential to meet future energy demands without further polluting the environment, but current solar panels based on silicon are expensive due to the cost of raw materials and high energy consumption during production. The way forward is to move towards thin-film solar cells using alternative materials and low-cost manufacturing methods. The photovoltaic community is actively researching thin-film solar cells based on amorphous silicon, cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and dye-sensitised and organic materials. However, progress has been slow due to a lack of proper understanding of the physics behind these devices. This book concentrates on the latest developments and attempts to improve our understanding of solid-state device physics. The material presented is mainly experimental and based on CdTe thin-film solar cells. The author extends these new findings to CIGS thin-film solar cells and presents a new device design based on graded bandgap multi-layer solar cells. This design has been experimentally tested using the well-researched GaAs/AlGaAs system, and initial devices have shown impressive device parameters. These devices are capable of absorbing all radiation (UV, visible and infra-red) within the solar spectrum and combine "impact ionisation" and "impurity photovoltaic" effects. The improved device understanding presented in this book should impact and guide future photovoltaic device development and low-cost thin-film solar panel manufacture. This new edition features an additional chapter besides exercises and their solutions, which will be useful for academics teaching in this field.

Solar Energy Conversion and Storage

Solar Energy Conversion and Storage
Author: Suresh C. Ameta
Publisher: CRC Press
Total Pages: 280
Release: 2015-11-05
Genre: Science
ISBN: 1482246317

Solar Energy Conversion and Storage: Photochemical Modes showcases the latest advances in solar cell technology while offering valuable insight into the future of solar energy conversion and storage. Focusing on photochemical methods of converting and/or storing light energy in the form of electrical or chemical energy, the book:Describes various t

Thin-Film Silicon Solar Cells

Thin-Film Silicon Solar Cells
Author: Arvind Shah
Publisher: EPFL Press
Total Pages: 472
Release: 2010-08-19
Genre: Technology & Engineering
ISBN: 9781420066746

Photovoltaic technology has now developed to the extent that it is close to fulfilling the vision of a "solar-energy world," as devices based on this technology are becoming efficient, low-cost and durable. This book provides a comprehensive treatment of thin-film silicon, a prevalent PV material, in terms of its semiconductor nature, starting out with the physical properties, but concentrating on device applications. A special emphasis is given to amorphous silicon and microcrystalline silicon as photovoltaic materials, along with a model that allows these systems to be physically described in the simplest manner possible, thus allowing the student or scientist/engineer entering the field of thin-film electronics to master a few basic concepts that are distinct from those in the field of conventional semiconductors. The main part of the book deals with solar cells and modules by illustrating the basic functioning of these devices, along with their limitations, design optimization, testing and fabrication methods. Among the manufacturing processes discussed are plasma-assisted and hot-wire deposition, sputtering, and structuring techniques.

Silicon Nanophotonics

Silicon Nanophotonics
Author: Leonid Khriachtchev
Publisher: CRC Press
Total Pages: 483
Release: 2016-10-26
Genre: Science
ISBN: 1315341131

Photonics is a key technology of this century. The combination of photonics and silicon technology is of great importance because of the potentiality of coupling electronics and optical functions on a single chip. Many experimental and theoretical studies have been performed to understand and design the photonic properties of silicon nanocrystals. Generation of light in silicon is a challenging perspective in the field; however, the issue of light-emitting devices does not limit the activity in the field. Research is also focused on light modulators, optical waveguides and interconnectors, optical amplifiers, detectors, memory elements, photonic crystals, etc. A particularly important task of silicon nanostructures is to generate electrical energy from solar light. Understanding the optical properties of silicon-based materials is central in designing photonic components. It is not possible to control the optical properties of nanoparticles without fundamental information on their microscopic structure, which explains a large number of theoretical works on this subject. Many fundamental and practical problems should be solved in order to develop this technology. In addition to open fundamental questions, it is even more difficult to develop the known experimental results towards practical realization. However, the world market for silicon photonics is expected to be huge; thus, more research activity in the field of silicon nanophotonics is expected in the future. This book describes different aspects of silicon nanophotonics, from fundamental issues to practical devices. The second edition is essentially different from the book published in 2008. Eight chapters of the first edition are not included in the new book, because the recent progress on those topics has not been large enough. Instead, seven new chapters appear. The other eight chapters are essentially modified to describe recent achievements in the field.

Clean Electricity From Photovoltaics

Clean Electricity From Photovoltaics
Author: Mary D Archer
Publisher: World Scientific
Total Pages: 870
Release: 2001-06-04
Genre: Medical
ISBN: 1783262052

Photovoltaic cells provide clean, reversible electrical power from the sun. Made from semiconductors, they are durable, silent in operation and free of polluting emissions. In this book, experts from all sectors of the PV community — materials scientists, physicists, production engineers, economists and environmentalists — give their critical appraisals of where the technology is now and what its prospects are./a

Solar Cells and Modules

Solar Cells and Modules
Author: Arvind Shah
Publisher: Springer Nature
Total Pages: 357
Release: 2020-07-16
Genre: Science
ISBN: 3030464873

This book gives a comprehensive introduction to the field of photovoltaic (PV) solar cells and modules. In thirteen chapters, it addresses a wide range of topics including the spectrum of light received by PV devices, the basic functioning of a solar cell, and the physical factors limiting the efficiency of solar cells. It places particular emphasis on crystalline silicon solar cells and modules, which constitute today more than 90 % of all modules sold worldwide. Describing in great detail both the manufacturing process and resulting module performance, the book also touches on the newest developments in this sector, such as Tunnel Oxide Passivated Contact (TOPCON) and heterojunction modules, while dedicating a major chapter to general questions of module design and fabrication. Overall, it presents the essential theoretical and practical concepts of PV solar cells and modules in an easy-to-understand manner and discusses current challenges facing the global research and development community.

Printable Solar Cells

Printable Solar Cells
Author: Nurdan Demirci Sankir
Publisher: John Wiley & Sons
Total Pages: 578
Release: 2017-04-19
Genre: Science
ISBN: 1119283736

Printable Solar Cells The book brings together the recent advances, new and cutting edge materials from solution process and manufacturing techniques that are the key to making photovoltaic devices more efficient and inexpensive. Printable Solar Cells provides an overall view of the new and highly promising materials and thin film deposition techniques for printable solar cell applications. The book is organized in four parts. Organic and inorganic hybrid materials and solar cell manufacturing techniques are covered in Part I. Part II is devoted to organic materials and processing technologies like spray coating. This part also demonstrates the key features of the interface engineering for the printable organic solar cells. The main focus of Part III is the perovskite solar cells, which is a new and promising family of the photovoltaic applications. Finally, inorganic materials and solution based thin film formation methods using these materials for printable solar cell application is discussed in Part IV. Audience The book will be of interest to a multidisciplinary group of fields, in industry and academia, including physics, chemistry, materials science, biochemical engineering, optoelectronic information, photovoltaic and renewable energy engineering, electrical engineering, mechanical and manufacturing engineering.

Nanostructured Solar Cells

Nanostructured Solar Cells
Author: Narottam Das
Publisher: BoD – Books on Demand
Total Pages: 316
Release: 2017-02-22
Genre: Technology & Engineering
ISBN: 953512935X

Nanostructured solar cells are very important in renewable energy sector as well as in environmental aspects, because it is environment friendly. The nano-grating structures (such as triangular or conical shaped) have a gradual change in refractive index which acts as a multilayer antireflective coating that is leading to reduced light reflection losses over broadband ranges of wavelength and angle of incidence. There are different types of losses in solar cells that always reduce the conversion efficiency, but the light reflection loss is the most important factor that decreases the conversion efficiency of solar cells significantly. The antireflective coating is an optical coating which is applied to the surface of lenses or any optical devices to reduce the light reflection losses. This coating assists for the light trapping capturing capacity or improves the efficiency of optical devices, such as lenses or solar cells. Hence, the multilayer antireflective coatings can reduce the light reflection losses and increases the conversion efficiency of nanostructured solar cells.