Neutrosophic Soluble Groups, Neutrosophic Nilpotent Groups and Their Properties

Neutrosophic Soluble Groups, Neutrosophic Nilpotent Groups and Their Properties
Author: Mumtaz Ali
Publisher: Infinite Study
Total Pages: 15
Release:
Genre: Mathematics
ISBN:

The theory of soluble groups and nilpotent groups is old and hence a generalized on. In this paper, we introduced neutrosophic soluble groups and neutrosophic nilpotent groups which have some kind of indeterminacy. These notions are generalized to the classic notions of soluble groups and nilpotent groups. We also derive some new type of series which derived some new notions of soluble groups and nilpotent groups. They are mixed neutrosophic soluble groups and mixed neutrosophic nilpotent groups as well as strong neutrosophic soluble groups and strong neutrosophic nilpotent groups.

New Research on Neutrosophic Algebraic Structures

New Research on Neutrosophic Algebraic Structures
Author: Mumtaz Ali
Publisher: Infinite Study
Total Pages: 335
Release: 2014
Genre: Fuzzy logic
ISBN: 1599733137

In this book, we define several new neutrosophic algebraic structures and their related properties. The main focus of this book is to study the important class of neutrosophic rings such as neutrosophic LA-semigroup ring, neutrosophic loop ring, neutrosophic groupoid ring and so on. We also construct their generalization in each case to study these neutrosophic algebraic structures in a broader sense. The indeterminacy element “I“ gives rise to a bigger algebraic structure than the classical algebraic structures. It mainly classifies the algebraic structures in three categories such as: neutrosophic algebraic structures, strong neutrosophic algebraic structures, and classical algebraic structures respectively. This reveals the fact that a classic algebraic structure is a part of the neutrosophic algebraic structures. This opens a new way for the researcher to think in a broader way to visualize these vast neutrosophic algebraic structures.

Collected Papers. Volume IX

Collected Papers. Volume IX
Author: Florentin Smarandache
Publisher: Infinite Study
Total Pages: 1008
Release: 2022-05-10
Genre: Mathematics
ISBN:

This ninth volume of Collected Papers includes 87 papers comprising 982 pages on Neutrosophic Theory and its applications in Algebra, written between 2014-2022 by the author alone or in collaboration with the following 81 co-authors (alphabetically ordered) from 19 countries: E.O. Adeleke, A.A.A. Agboola, Ahmed B. Al-Nafee, Ahmed Mostafa Khalil, Akbar Rezaei, S.A. Akinleye, Ali Hassan, Mumtaz Ali, Rajab Ali Borzooei , Assia Bakali, Cenap Özel, Victor Christianto, Chunxin Bo, Rakhal Das, Bijan Davvaz, R. Dhavaseelan, B. Elavarasan, Fahad Alsharari, T. Gharibah, Hina Gulzar, Hashem Bordbar, Le Hoang Son, Emmanuel Ilojide, Tèmítópé Gbóláhàn Jaíyéolá, M. Karthika, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Huma Khan, Madad Khan, Mohsin Khan, Hee Sik Kim, Seon Jeong Kim, Valeri Kromov, R. M. Latif, Madeleine Al-Tahan, Mehmat Ali Ozturk, Minghao Hu, S. Mirvakili, Mohammad Abobala, Mohammad Hamidi, Mohammed Abdel-Sattar, Mohammed A. Al Shumrani, Mohamed Talea, Muhammad Akram, Muhammad Aslam, Muhammad Aslam Malik, Muhammad Gulistan, Muhammad Shabir, G. Muhiuddin, Memudu Olaposi Olatinwo, Osman Anis, Choonkil Park, M. Parimala, Ping Li, K. Porselvi, D. Preethi, S. Rajareega, N. Rajesh, Udhayakumar Ramalingam, Riad K. Al-Hamido, Yaser Saber, Arsham Borumand Saeid, Saeid Jafari, Said Broumi, A.A. Salama, Ganeshsree Selvachandran, Songtao Shao, Seok-Zun Song, Tahsin Oner, M. Mohseni Takallo, Binod Chandra Tripathy, Tugce Katican, J. Vimala, Xiaohong Zhang, Xiaoyan Mao, Xiaoying Wu, Xingliang Liang, Xin Zhou, Yingcang Ma, Young Bae Jun, Juanjuan Zhang.

Neutrosophic Multigroups and Applications

Neutrosophic Multigroups and Applications
Author: Vakkas Uluçay
Publisher: Infinite Study
Total Pages: 17
Release:
Genre: Mathematics
ISBN:

In recent years, fuzzy multisets and neutrosophic sets have become a subject of great interest for researchers and have been widely applied to algebraic structures include groups, rings, fields and lattices. Neutrosophic multiset is a generalization of multisets and neutrosophic sets. In this paper, we proposed a algebraic structure on neutrosophic multisets is called neutrosophic multigroups which allow the truth-membership, indeterminacy-membership and falsity-membership sequence have a set of real values between zero and one.

Neutrosophic Sets and Systems, Vol. 36, 2020

Neutrosophic Sets and Systems, Vol. 36, 2020
Author: Florentin Smarandache
Publisher: Infinite Study
Total Pages: 410
Release:
Genre: Mathematics
ISBN:

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: n-Refined Neutrosophic Modules, A Neutrosophic Approach to Digital Images, A Novel Method for Neutrosophic Assignment Problem by using Interval-Valued Trapezoidal Neutrosophic Number.

Neutrosophic Sets and Systems. An International Journal in Information Science and Engineering, Vol. 36, 2020

Neutrosophic Sets and Systems. An International Journal in Information Science and Engineering, Vol. 36, 2020
Author: Florentin Smarandache
Publisher: Infinite Study
Total Pages: 410
Release: 2020-10-01
Genre: Mathematics
ISBN:

Neutrosophic Sets and Systems (NSS) is an academic journal, published quarterly online and on paper, that has been created for publications of advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics etc. and their applications in any field.

The Encyclopedia of Neutrosophic Researchers, 1st volume

The Encyclopedia of Neutrosophic Researchers, 1st volume
Author: Florentin Smarandache
Publisher: Infinite Study
Total Pages: 232
Release: 2016-11-12
Genre: Mathematics
ISBN: 1599734680

This is the first volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The 78 authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books. Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: artificial intelligence, data mining, soft computing, decision making in incomplete / indeterminate / inconsistent information systems, image processing, computational modelling, robotics, medical diagnosis, biomedical engineering, investment problems, economic forecasting, social science, humanistic and practical achievements.

Neutrosophic Precalculus and Neutrosophic Calculus

Neutrosophic Precalculus and Neutrosophic Calculus
Author: Florentin Smarandache
Publisher: Infinite Study
Total Pages: 156
Release: 2015-06-15
Genre:
ISBN: 1599733528

Neutrosophic Analysis is a generalization of Set Analysis, which in its turn is a generalization of Interval Analysis. Neutrosophic Precalculus is referred to indeterminate staticity, while Neutrosophic Calculus is the mathematics of indeterminate change. The Neutrosophic Precalculus and Neutrosophic Calculus can be developed in many ways, depending on the types of indeterminacy one has and on the methods used to deal with such indeterminacy. In this book, the author presents a few examples of indeterminacies and several methods to deal with these specific indeterminacies, but many other indeterminacies there exist in our everyday life, and they have to be studied and resolved using similar of different methods. Therefore, more research should to be done in the field of neutrosophics. The author introduces for the first time the notions of neutrosophic mereo-limit, neutrosophic mereo-continuity (in a different way from the classical semi-continuity), neutrosophic mereo-derivative and neutrosophic mereo-integral (both in different ways from the fractional calculus), besides the classical definitions of limit, continuity, derivative, and integral respectively. Future research may be done in the neutrosophic fractional calculus. It means that in neutrosophic calculus there are limits, continuity, derivatives, and integrals that are not complete, i.e. there are neutrosophic functions that at a given point may have a degree of a limit (not 100%) called mereo-limit, or may be continuous in a certain degree (not 100%) called mereo-continuity, or may be differentiable or integrable in a certain degree (not 100%) called mereo-derivatives and respectively mereo-integrals. These occur because of indeterminacies...

Further Theory of Neutrosophic Triplet Topology and Applications

Further Theory of Neutrosophic Triplet Topology and Applications
Author: Mohammed A. Al Shumrani
Publisher: Infinite Study
Total Pages: 12
Release:
Genre: Mathematics
ISBN:

In this paper we study and develop the Neutrosophic Triplet Topology (NTT) that was recently introduced by Sahin et al. Like classical topology, the NTT tells how the elements of a set relate spatially to each other in a more comprehensive way using the idea of Neutrosophic Triplet Sets.

Weak LA-hypergroups; Neutrosophy, Enumeration and Redox Reaction

Weak LA-hypergroups; Neutrosophy, Enumeration and Redox Reaction
Author: Shah Nawaz
Publisher: Infinite Study
Total Pages: 17
Release: 2020-10-01
Genre: Mathematics
ISBN:

The main motivation of this article is to introduce the theme of Neutrosophic triplet(NT) Hv-LA-Groups. This inspiration is recieved from the structure of weak non-associative Neutrosophic triplet(NT) structures. For it, firstly, we define that each element x have left neut(x) and left anti(x) ; which may or may not unique. We further introduce the notion of neutrosophic triplet Hv-LA-subgroups and neutrosophic weak homomorphism on NT Hv-LA-Group. Secondly, presented NT Hv-LA-Group and develop two Mathematica Packages which help to check the left invertive law, weak left invertive law and reproductive axiom. Finally established a numerical example to validate the proposed approach in chemistry using redox reactions.