Neural Networks in a Softcomputing Framework

Neural Networks in a Softcomputing Framework
Author: Ke-Lin Du
Publisher: Springer Science & Business Media
Total Pages: 610
Release: 2006-08-02
Genre: Technology & Engineering
ISBN: 1846283035

This concise but comprehensive textbook reviews the most popular neural-network methods and their associated techniques. Each chapter provides state-of-the-art descriptions of important major research results of the respective neural-network methods. A range of relevant computational intelligence topics, such as fuzzy logic and evolutionary algorithms – powerful tools for neural-network learning – are introduced. The systematic survey of neural-network models and exhaustive references list will point readers toward topics for future research. The algorithms outlined also make this textbook a valuable reference for scientists and practitioners working in pattern recognition, signal processing, speech and image processing, data analysis and artificial intelligence.

Recurrent Neural Networks and Soft Computing

Recurrent Neural Networks and Soft Computing
Author: Mahmoud ElHefnawi
Publisher: BoD – Books on Demand
Total Pages: 306
Release: 2012-03-30
Genre: Computers
ISBN: 9535104098

New applications in recurrent neural networks are covered by this book, which will be required reading in the field. Methodological tools covered include ranking indices for fuzzy numbers, a neuro-fuzzy digital filter and mapping graphs of parallel programmes. The scope of the techniques profiled in real-world applications is evident from chapters on the recognition of severe weather patterns, adult and foetal ECGs in healthcare and the prediction of temperature time-series signals. Additional topics in this vein are the application of AI techniques to electromagnetic interference problems, bioprocess identification and I-term control and the use of BRNN-SVM to improve protein-domain prediction accuracy. Recurrent neural networks can also be used in virtual reality and nonlinear dynamical systems, as shown by two chapters.

Neural Networks and Statistical Learning

Neural Networks and Statistical Learning
Author: Ke-Lin Du
Publisher: Springer Nature
Total Pages: 996
Release: 2019-09-12
Genre: Mathematics
ISBN: 1447174526

This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing. Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include: • multilayer perceptron; • the Hopfield network; • associative memory models;• clustering models and algorithms; • t he radial basis function network; • recurrent neural networks; • nonnegative matrix factorization; • independent component analysis; •probabilistic and Bayesian networks; and • fuzzy sets and logic. Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.

Neuro-fuzzy and Soft Computing

Neuro-fuzzy and Soft Computing
Author: Jyh-Shing Roger Jang
Publisher: Pearson Education
Total Pages: 658
Release: 1997
Genre: Computers
ISBN:

Neuro-Fuzzy and Soft Computing provides the first comprehensive treatment of the constituent methodologies underlying neuro-fuzzy and soft computing, an evolving branch of computational intelligence. The constituent methodologies include fuzzy set theory, neural networks, data clustering techniques, and several stochastic optimization methods that do not require gradient information. In particular, the authors put equal emphasis on theoretical aspects of covered methodologies, as well as empirical observations and verifications of various applications in practice. The book is well suited for use as a text for courses on computational intelligence and as a single reference source for this emerging field. To help readers understand the material the presentation includes more than 50 examples, more than 150 exercises, over 300 illustrations, and more than 150 Matlab scripts. In addition, Matlab is utilized to visualize the processes of fuzzy reasoning, neural-network learning, neuro-fuzzy integration and training, and gradient-free optimization (such as genetic algorithms, simulated annealing, random search, and downhill Simplex method). The presentation also makes use of SIMULINK for neuro-fuzzy control system simulations. All Matlab scripts used in the book are available on the free companion software disk that may be ordered by using the enclosed reply card. The book also contains an "Internet Resource Page" to point the reader to on-line neuro-fuzzy and soft computing home pages, publications, public-domain software, research institutes, news groups, etc. All the HTTP and FTP addresses are available as a bookmark file on the companion software disk.

Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools

Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools
Author: József Dombi
Publisher: Springer Nature
Total Pages: 186
Release: 2021-04-28
Genre: Technology & Engineering
ISBN: 3030722805

The research presented in this book shows how combining deep neural networks with a special class of fuzzy logical rules and multi-criteria decision tools can make deep neural networks more interpretable – and even, in many cases, more efficient. Fuzzy logic together with multi-criteria decision-making tools provides very powerful tools for modeling human thinking. Based on their common theoretical basis, we propose a consistent framework for modeling human thinking by using the tools of all three fields: fuzzy logic, multi-criteria decision-making, and deep learning to help reduce the black-box nature of neural models; a challenge that is of vital importance to the whole research community.

Neural Network Design

Neural Network Design
Author: Martin T. Hagan
Publisher:
Total Pages:
Release: 2003
Genre: Neural networks (Computer science)
ISBN: 9789812403766

Artificial Intelligence and Integrated Intelligent Information Systems: Emerging Technologies and Applications

Artificial Intelligence and Integrated Intelligent Information Systems: Emerging Technologies and Applications
Author: Zha, Xuan
Publisher: IGI Global
Total Pages: 478
Release: 2006-10-31
Genre: Computers
ISBN: 1599042517

Researchers in the evolving fields of artificial intelligence and information systems are constantly presented with new challenges. Artificial Intelligence and Integrated Intelligent Information Systems: Emerging Technologies and Applications provides both researchers and professionals with the latest knowledge applied to customized logic systems, agent-based approaches to modeling, and human-based models. Artificial Intelligence and Integrated Intelligent Information Systems: Emerging Technologies and Applications presents the recent advances in multi-mobile agent systems, the product development process, fuzzy logic systems, neural networks, and ambient intelligent environments among many other innovations in this exciting field.

Neural-Symbolic Learning Systems

Neural-Symbolic Learning Systems
Author: Artur S. d'Avila Garcez
Publisher: Springer Science & Business Media
Total Pages: 276
Release: 2012-12-06
Genre: Computers
ISBN: 1447102118

Artificial Intelligence is concerned with producing devices that help or replace human beings in their daily activities. Neural-symbolic learning systems play a central role in this task by combining, and trying to benefit from, the advantages of both the neural and symbolic paradigms of artificial intelligence. This book provides a comprehensive introduction to the field of neural-symbolic learning systems, and an invaluable overview of the latest research issues in this area. It is divided into three sections, covering the main topics of neural-symbolic integration - theoretical advances in knowledge representation and learning, knowledge extraction from trained neural networks, and inconsistency handling in neural-symbolic systems. Each section provides a balance of theory and practice, giving the results of applications using real-world problems in areas such as DNA sequence analysis, power systems fault diagnosis, and software requirements specifications. Neural-Symbolic Learning Systems will be invaluable reading for researchers and graduate students in Engineering, Computing Science, Artificial Intelligence, Machine Learning and Neurocomputing. It will also be of interest to Intelligent Systems practitioners and anyone interested in applications of hybrid artificial intelligence systems.

Applied Soft Computing Technologies: The Challenge of Complexity

Applied Soft Computing Technologies: The Challenge of Complexity
Author: Ajith Abraham
Publisher: Springer Science & Business Media
Total Pages: 838
Release: 2006-08-11
Genre: Computers
ISBN: 3540316620

This volume presents the proceedings of the 9th Online World Conference on Soft Computing in Industrial Applications, held on the World Wide Web in 2004. It includes lectures, original papers and tutorials presented during the conference. The book brings together outstanding research and developments in soft computing, including evolutionary computation, fuzzy logic, neural networks, and their fusion, and its applications in science and technology.