Neural Networks and Genome Informatics

Neural Networks and Genome Informatics
Author: C.H. Wu
Publisher: Elsevier
Total Pages: 218
Release: 2012-12-02
Genre: Computers
ISBN: 0080537375

This book is a comprehensive reference in the field of neural networks and genome informatics. The tutorial of neural network foundations introduces basic neural network technology and terminology. This is followed by an in-depth discussion of special system designs for building neural networks for genome informatics, and broad reviews and evaluations of current state-of-the-art methods in the field. This book concludes with a description of open research problems and future research directions.

Post-genome Informatics

Post-genome Informatics
Author: Minoru Kanehisa
Publisher: OUP Oxford
Total Pages: 159
Release: 2000-01-20
Genre: Science
ISBN: 0191544922

The genome projects have now entered a rapid production phase with complete genome sequences and complete gene catalogues already available for a number of organisms and an increasing number expected shortly. In addition the new DNA and protein chip technologies can produce functional data about genes such as gene expression profiles at a rapid rate. There is therefore a large and ever increasing amount of data about genes and molecules. However there is still a huge gap between information at the molecular level and information at the level of integrated biological systems. It is this gap that is addressed in Post-genome Informatics. Post-genome informatics is the analysis of biological functions in terms of the network of interacting molecules and genes with the aim of understanding how a biological system is organized from its individual building blocks. As well as containing a comprehensive survey of the database and computational technologies relevant to molecular sequence analysis, Post-genome Informatics will provide the reader with a conceptual framework and practical methods for the representation and computation of molecular networks.

Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2013

Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2013
Author: Suresh Chandra Satapathy
Publisher: Springer Science & Business Media
Total Pages: 553
Release: 2013-10-05
Genre: Technology & Engineering
ISBN: 3319029312

This volume contains the papers presented at the Second International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA-2013) held during 14-16 November 2013 organized by Bhubaneswar Engineering College (BEC), Bhubaneswar, Odisha, India. It contains 63 papers focusing on application of intelligent techniques which includes evolutionary computation techniques like genetic algorithm, particle swarm optimization techniques, teaching-learning based optimization etc for various engineering applications such as data mining, Fuzzy systems, Machine Intelligence and ANN, Web technologies and Multimedia applications and Intelligent computing and Networking etc.

Bioinformatics, second edition

Bioinformatics, second edition
Author: Pierre Baldi
Publisher: MIT Press
Total Pages: 492
Release: 2001-07-20
Genre: Computers
ISBN: 9780262025065

A guide to machine learning approaches and their application to the analysis of biological data. An unprecedented wealth of data is being generated by genome sequencing projects and other experimental efforts to determine the structure and function of biological molecules. The demands and opportunities for interpreting these data are expanding rapidly. Bioinformatics is the development and application of computer methods for management, analysis, interpretation, and prediction, as well as for the design of experiments. Machine learning approaches (e.g., neural networks, hidden Markov models, and belief networks) are ideally suited for areas where there is a lot of data but little theory, which is the situation in molecular biology. The goal in machine learning is to extract useful information from a body of data by building good probabilistic models—and to automate the process as much as possible. In this book Pierre Baldi and Søren Brunak present the key machine learning approaches and apply them to the computational problems encountered in the analysis of biological data. The book is aimed both at biologists and biochemists who need to understand new data-driven algorithms and at those with a primary background in physics, mathematics, statistics, or computer science who need to know more about applications in molecular biology. This new second edition contains expanded coverage of probabilistic graphical models and of the applications of neural networks, as well as a new chapter on microarrays and gene expression. The entire text has been extensively revised.

Bioinformatics Technologies

Bioinformatics Technologies
Author: Yi-Ping Phoebe Chen
Publisher: Springer Science & Business Media
Total Pages: 420
Release: 2005-01-18
Genre: Computers
ISBN: 9783540208730

Introductio to bioinformatics. Overview of structural bioinformatics. Database warehousing in bioinformatics. Modeling for bioinformatics. Pattern matching for motifs. Visualization and fractal analysis of biological sequences. Microarray data analysis.

Introduction to Machine Learning and Bioinformatics

Introduction to Machine Learning and Bioinformatics
Author: Sushmita Mitra
Publisher: CRC Press
Total Pages: 386
Release: 2008-06-05
Genre: Mathematics
ISBN: 1420011782

Lucidly Integrates Current Activities Focusing on both fundamentals and recent advances, Introduction to Machine Learning and Bioinformatics presents an informative and accessible account of the ways in which these two increasingly intertwined areas relate to each other. Examines Connections between Machine Learning & Bioinformatics The book begins with a brief historical overview of the technological developments in biology. It then describes the main problems in bioinformatics and the fundamental concepts and algorithms of machine learning. After forming this foundation, the authors explore how machine learning techniques apply to bioinformatics problems, such as electron density map interpretation, biclustering, DNA sequence analysis, and tumor classification. They also include exercises at the end of some chapters and offer supplementary materials on their website. Explores How Machine Learning Techniques Can Help Solve Bioinformatics Problems Shedding light on aspects of both machine learning and bioinformatics, this text shows how the innovative tools and techniques of machine learning help extract knowledge from the deluge of information produced by today’s biological experiments.

Proceedings of the Third International Conference on Information Management and Machine Intelligence

Proceedings of the Third International Conference on Information Management and Machine Intelligence
Author: Dinesh Goyal
Publisher: Springer Nature
Total Pages: 640
Release: 2022-08-03
Genre: Technology & Engineering
ISBN: 9811920656

This book features selected papers presented at Third International Conference on International Conference on Information Management and Machine Intelligence (ICIMMI 2021) held at Poornima Institute of Engineering & Technology, Jaipur, Rajasthan, India during 23 – 24 December 2021. It covers a range of topics, including data analytics; AI; machine and deep learning; information management, security, processing techniques and interpretation; applications of artificial intelligence in soft computing and pattern recognition; cloud-based applications for machine learning; application of IoT in power distribution systems; as well as wireless sensor networks and adaptive wireless communication.

Advances in Neural Networks - ISNN 2007

Advances in Neural Networks - ISNN 2007
Author: Derong Liu
Publisher: Springer Science & Business Media
Total Pages: 1345
Release: 2007-05-24
Genre: Computers
ISBN: 3540723927

Annotation The three volume set LNCS 4491/4492/4493 constitutes the refereed proceedings of the 4th International Symposium on Neural Networks, ISNN 2007, held in Nanjing, China in June 2007. The 262 revised long papers and 192 revised short papers presented were carefully reviewed and selected from a total of 1.975 submissions. The papers are organized in topical sections on neural fuzzy control, neural networks for control applications, adaptive dynamic programming and reinforcement learning, neural networks for nonlinear systems modeling, robotics, stability analysis of neural networks, learning and approximation, data mining and feature extraction, chaos and synchronization, neural fuzzy systems, training and learning algorithms for neural networks, neural network structures, neural networks for pattern recognition, SOMs, ICA/PCA, biomedical applications, feedforward neural networks, recurrent neural networks, neural networks for optimization, support vector machines, fault diagnosis/detection, communications and signal processing, image/video processing, and applications of neural networks.

Advances in Bioinformatics

Advances in Bioinformatics
Author: Vijai Singh
Publisher: Springer Nature
Total Pages: 446
Release: 2021-07-31
Genre: Science
ISBN: 9813361913

This book presents the latest developments in bioinformatics, highlighting the importance of bioinformatics in genomics, transcriptomics, metabolism and cheminformatics analysis, as well as in drug discovery and development. It covers tools, data mining and analysis, protein analysis, computational vaccine, and drug design. Covering cheminformatics, computational evolutionary biology and the role of next-generation sequencing and neural network analysis, it also discusses the use of bioinformatics tools in the development of precision medicine. This book offers a valuable source of information for not only beginners in bioinformatics, but also for students, researchers, scientists, clinicians, practitioners, policymakers, and stakeholders who are interested in harnessing the potential of bioinformatics in many areas.