Networks Of The Brain
Download Networks Of The Brain full books in PDF, epub, and Kindle. Read online free Networks Of The Brain ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Olaf Sporns |
Publisher | : MIT Press |
Total Pages | : 433 |
Release | : 2016-02-12 |
Genre | : Medical |
ISBN | : 0262528983 |
An integrative overview of network approaches to neuroscience explores the origins of brain complexity and the link between brain structure and function. Over the last decade, the study of complex networks has expanded across diverse scientific fields. Increasingly, science is concerned with the structure, behavior, and evolution of complex systems ranging from cells to ecosystems. In Networks of the Brain, Olaf Sporns describes how the integrative nature of brain function can be illuminated from a complex network perspective. Highlighting the many emerging points of contact between neuroscience and network science, the book serves to introduce network theory to neuroscientists and neuroscience to those working on theoretical network models. Sporns emphasizes how networks connect levels of organization in the brain and how they link structure to function, offering an informal and nonmathematical treatment of the subject. Networks of the Brain provides a synthesis of the sciences of complex networks and the brain that will be an essential foundation for future research.
Author | : Alex Fornito |
Publisher | : Academic Press |
Total Pages | : 496 |
Release | : 2016-03-04 |
Genre | : Medical |
ISBN | : 0124081185 |
Fundamentals of Brain Network Analysis is a comprehensive and accessible introduction to methods for unraveling the extraordinary complexity of neuronal connectivity. From the perspective of graph theory and network science, this book introduces, motivates and explains techniques for modeling brain networks as graphs of nodes connected by edges, and covers a diverse array of measures for quantifying their topological and spatial organization. It builds intuition for key concepts and methods by illustrating how they can be practically applied in diverse areas of neuroscience, ranging from the analysis of synaptic networks in the nematode worm to the characterization of large-scale human brain networks constructed with magnetic resonance imaging. This text is ideally suited to neuroscientists wanting to develop expertise in the rapidly developing field of neural connectomics, and to physical and computational scientists wanting to understand how these quantitative methods can be used to understand brain organization. - Winner of the 2017 PROSE Award in Biomedicine & Neuroscience and the 2017 British Medical Association (BMA) Award in Neurology - Extensively illustrated throughout by graphical representations of key mathematical concepts and their practical applications to analyses of nervous systems - Comprehensively covers graph theoretical analyses of structural and functional brain networks, from microscopic to macroscopic scales, using examples based on a wide variety of experimental methods in neuroscience - Designed to inform and empower scientists at all levels of experience, and from any specialist background, wanting to use modern methods of network science to understand the organization of the brain
Author | : Carl Faingold |
Publisher | : Academic Press |
Total Pages | : 537 |
Release | : 2013-12-26 |
Genre | : Medical |
ISBN | : 0124158641 |
Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics, edited by two leaders in the field, offers a current and complete review of what we know about neural networks. How the brain accomplishes many of its more complex tasks can only be understood via study of neuronal network control and network interactions. Large networks can undergo major functional changes, resulting in substantially different brain function and affecting everything from learning to the potential for epilepsy. With chapters authored by experts in each topic, this book advances the understanding of: - How the brain carries out important tasks via networks - How these networks interact in normal brain function - Major mechanisms that control network function - The interaction of the normal networks to produce more complex behaviors - How brain disorders can result from abnormal interactions - How therapy of disorders can be advanced through this network approach This book will benefit neuroscience researchers and graduate students with an interest in networks, as well as clinicians in neuroscience, pharmacology, and psychiatry dealing with neurobiological disorders. - Utilizes perspectives and tools from various neuroscience subdisciplines (cellular, systems, physiologic), making the volume broadly relevant - Chapters explore normal network function and control mechanisms, with an eye to improving therapies for brain disorders - Reflects predominant disciplinary shift from an anatomical to a functional perspective of the brain - Edited work with chapters authored by leaders in the field around the globe – the broadest, most expert coverage available
Author | : Michael A. Arbib |
Publisher | : MIT Press |
Total Pages | : 1328 |
Release | : 2003 |
Genre | : Neural circuitry |
ISBN | : 0262011972 |
This second edition presents the enormous progress made in recent years in the many subfields related to the two great questions : how does the brain work? and, How can we build intelligent machines? This second edition greatly increases the coverage of models of fundamental neurobiology, cognitive neuroscience, and neural network approaches to language. (Midwest).
Author | : Lucina Q. Uddin |
Publisher | : Academic Press |
Total Pages | : 48 |
Release | : 2016-08-24 |
Genre | : Science |
ISBN | : 0128045949 |
Salience Network of the Human Brain focuses on the multiple sources of stimuli that compete for our attention, providing interesting discussions on how the relative salience—importance or prominence—of each of these inputs determines which ones we choose to focus on for more in-depth processing. The salience network is a collection of regions of the brain that select which stimuli are deserving of our attention. The network has key nodes in the insular cortex and is critical for detecting behaviorally relevant stimuli and for coordinating the brain's neural resources in response to these stimuli. The insular cortex is a complex and multipurpose structure that plays a role in numerous cognitive functions related to perception, emotion, and interpersonal experience—and the failure of this network to function properly can lead to numerous neuropsychiatric disorders, including autism spectrum disorder, psychosis, and dementia. - Presents the only publication available that summarizes our understanding of the salience network in one resource - Authored by a leading research on this important aspect of attention - Focuses on the multiple sources of stimuli that compete for our attention, providing interesting discussions on how the relative salience—importance or prominence—of each of these inputs determines which ones we choose to focus on for more in-depth processing
Author | : Edmund T. Rolls |
Publisher | : Oxford University Press, USA |
Total Pages | : 418 |
Release | : 1998 |
Genre | : Computers |
ISBN | : 9780198524335 |
This book describes the types of computation that can be performed by biologically plausible neural networks and shows how they may be implemented in different systems of the brain. It is structured in three sections, each of which addresses a different need. The first introduces and analyzes the operation of several fundamental types of neural networks. The second discusses real neural networks in several brain systems, and shows how it is becoming possible to construct theories about the way different parts of the brain work. This section also analyzes the various neuroscience and neurocomputation techniques that need to be combined to ensure further progress in understanding the mechanism of brain processes. The third section, a collection of appendices. introduces the formal quantitative approaches to many of the networks described. Neural Networks and Brain Function is an accessible, clear introduction for researchers and students in neuroscience and artificial intelligence to the fascinating problems of how the brain works and how behavior is determined.
Author | : Henry Kennedy |
Publisher | : Springer |
Total Pages | : 173 |
Release | : 2016-03-10 |
Genre | : Medical |
ISBN | : 3319277774 |
This book has brought together leading investigators who work in the new arena of brain connectomics. This includes ‘macro-connectome’ efforts to comprehensively chart long-distance pathways and functional networks; ‘micro-connectome’ efforts to identify every neuron, axon, dendrite, synapse, and glial process within restricted brain regions; and ‘meso-connectome’ efforts to systematically map both local and long-distance connections using anatomical tracers. This book highlights cutting-edge methods that can accelerate progress in elucidating static ‘hard-wired’ circuits of the brain as well as dynamic interactions that are vital for brain function. The power of connectomic approaches in characterizing abnormal circuits in the many brain disorders that afflict humankind is considered. Experts in computational neuroscience and network theory provide perspectives needed for synthesizing across different scales in space and time. Altogether, this book provides an integrated view of the challenges and opportunities in deciphering brain circuits in health and disease.
Author | : Michael A. Arbib |
Publisher | : MIT Press (MA) |
Total Pages | : 1118 |
Release | : 1998 |
Genre | : Computers |
ISBN | : 9780262511025 |
Choice Outstanding Academic Title, 1996. In hundreds of articles by experts from around the world, and in overviews and "road maps" prepared by the editor, The Handbook of Brain Theory and Neural Networks charts the immense progress made in recent years in many specific areas related to great questions: How does the brain work? How can we build intelligent machines? While many books discuss limited aspects of one subfield or another of brain theory and neural networks, the Handbook covers the entire sweep of topics—from detailed models of single neurons, analyses of a wide variety of biological neural networks, and connectionist studies of psychology and language, to mathematical analyses of a variety of abstract neural networks, and technological applications of adaptive, artificial neural networks. Expository material makes the book accessible to readers with varied backgrounds while still offering a clear view of the recent, specialized research on specific topics.
Author | : Moo K. Chung |
Publisher | : Cambridge University Press |
Total Pages | : 343 |
Release | : 2019-06-27 |
Genre | : Computers |
ISBN | : 110718486X |
This coherent mathematical and statistical approach aimed at graduate students incorporates regression and topology as well as graph theory.
Author | : Peter Robin Hiesinger |
Publisher | : Princeton University Press |
Total Pages | : 384 |
Release | : 2022-12-13 |
Genre | : Computers |
ISBN | : 0691241694 |
"In this book, Peter Robin Hiesinger explores historical and contemporary attempts to understand the information needed to make biological and artificial neural networks. Developmental neurobiologists and computer scientists with an interest in artificial intelligence - driven by the promise and resources of biomedical research on the one hand, and by the promise and advances of computer technology on the other - are trying to understand the fundamental principles that guide the generation of an intelligent system. Yet, though researchers in these disciplines share a common interest, their perspectives and approaches are often quite different. The book makes the case that "the information problem" underlies both fields, driving the questions that are driving forward the frontiers, and aims to encourage cross-disciplinary communication and understanding, to help both fields make progress. The questions that challenge researchers in these fields include the following. How does genetic information unfold during the years-long process of human brain development, and can this be a short-cut to create human-level artificial intelligence? Is the biological brain just messy hardware that can be improved upon by running learning algorithms in computers? Can artificial intelligence bypass evolutionary programming of "grown" networks? These questions are tightly linked, and answering them requires an understanding of how information unfolds algorithmically to generate functional neural networks. Via a series of closely linked "discussions" (fictional dialogues between researchers in different disciplines) and pedagogical "seminars," the author explores the different challenges facing researchers working on neural networks, their different perspectives and approaches, as well as the common ground and understanding to be found amongst those sharing an interest in the development of biological brains and artificial intelligent systems"--