Neo4j A Graph Project Story
Download Neo4j A Graph Project Story full books in PDF, epub, and Kindle. Read online free Neo4j A Graph Project Story ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Sylvain Roussy |
Publisher | : Éditions D-BookeR |
Total Pages | : 297 |
Release | : 2019-05-13 |
Genre | : Computers |
ISBN | : 2822707464 |
This book provides you with a concrete approach of using Neo4j in a production context. Written in the style of a play, it reports the debates between the members of a technical team specialized in strongly connected data. It focuses on methodology, integrations with existing systems, performance, monitoring and security. You may already have an idea of what Neo4j is and how it works, and maybe you've even played around with some ideas using it. The question now is how you can take your graph project all the way to production-grade. This is what is discussed in this book. The book starts with a brief introduction to Neo4j and its query language, CYPHER, to help readers who are just beginning to explore Neo4j. Then we go straight to the subject in question: how to set up a real life project based on Neo4j, from the proof of concept to an operating production-grade graph database. We focus on methodology, integrations with existing systems, performance, monitoring and security. As leading experts in the Neo4j French community, the authors have chosen an unusual format to transmit their technical know-how: they tell you a story, a graph project story, where the protagonists are members of a technical team who specializes in the representation and manipulation of strongly connected data. The plot starts when a client come in with his project. You will attend their working sessions and see how they develop the project, fight over approaches, and ultimately solve the problems they encounter. Welcome to GraphITs.Tech! This audacious and, we hope, entertaining approach allows you to experience all aspects of setting up a graph database, from the various and sometimes opposing points of view of technical and network experts, project managers, and even trainees. Level: Intermediate/Advanced Table of contents: About Neo4j and CYPHER Welcome to GraphITs.Tech! 1. A Little Bit of Method and Analysis 2. Interact with Neo4j 3. Data import/export 4. Operating Neo4j 5. Securing data Appendix Neo4j OGM and Spring Data Neo4j Appendix CYPHER Refcard
Author | : Rik Van Bruggen |
Publisher | : Packt Publishing Ltd |
Total Pages | : 296 |
Release | : 2014-08-25 |
Genre | : Computers |
ISBN | : 1849517177 |
This book is for developers who want an alternative way to store and process data within their applications. No previous graph database experience is required; however, some basic database knowledge will help you understand the concepts more easily.
Author | : Mark Needham |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 297 |
Release | : 2019-05-16 |
Genre | : Computers |
ISBN | : 1492047635 |
Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models. You’ll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value—from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions. This practical book walks you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j—two of the most common choices for graph analytics. Also included: sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality, and community detection. Learn how graph analytics vary from conventional statistical analysis Understand how classic graph algorithms work, and how they are applied Get guidance on which algorithms to use for different types of questions Explore algorithm examples with working code and sample datasets from Spark and Neo4j See how connected feature extraction can increase machine learning accuracy and precision Walk through creating an ML workflow for link prediction combining Neo4j and Spark
Author | : Estelle Scifo |
Publisher | : Packt Publishing Ltd |
Total Pages | : 496 |
Release | : 2020-08-21 |
Genre | : Computers |
ISBN | : 1839215666 |
Discover how to use Neo4j to identify relationships within complex and large graph datasets using graph modeling, graph algorithms, and machine learning Key FeaturesGet up and running with graph analytics with the help of real-world examplesExplore various use cases such as fraud detection, graph-based search, and recommendation systemsGet to grips with the Graph Data Science library with the help of examples, and use Neo4j in the cloud for effective application scalingBook Description Neo4j is a graph database that includes plugins to run complex graph algorithms. The book starts with an introduction to the basics of graph analytics, the Cypher query language, and graph architecture components, and helps you to understand why enterprises have started to adopt graph analytics within their organizations. You’ll find out how to implement Neo4j algorithms and techniques and explore various graph analytics methods to reveal complex relationships in your data. You’ll be able to implement graph analytics catering to different domains such as fraud detection, graph-based search, recommendation systems, social networking, and data management. You’ll also learn how to store data in graph databases and extract valuable insights from it. As you become well-versed with the techniques, you’ll discover graph machine learning in order to address simple to complex challenges using Neo4j. You will also understand how to use graph data in a machine learning model in order to make predictions based on your data. Finally, you’ll get to grips with structuring a web application for production using Neo4j. By the end of this book, you’ll not only be able to harness the power of graphs to handle a broad range of problem areas, but you’ll also have learned how to use Neo4j efficiently to identify complex relationships in your data. What you will learnBecome well-versed with Neo4j graph database building blocks, nodes, and relationshipsDiscover how to create, update, and delete nodes and relationships using Cypher queryingUse graphs to improve web search and recommendationsUnderstand graph algorithms such as pathfinding, spatial search, centrality, and community detectionFind out different steps to integrate graphs in a normal machine learning pipelineFormulate a link prediction problem in the context of machine learningImplement graph embedding algorithms such as DeepWalk, and use them in Neo4j graphsWho this book is for This book is for data analysts, business analysts, graph analysts, and database developers looking to store and process graph data to reveal key data insights. This book will also appeal to data scientists who want to build intelligent graph applications catering to different domains. Some experience with Neo4j is required.
Author | : Ian Robinson |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 161 |
Release | : 2013-06-10 |
Genre | : Computers |
ISBN | : 1449356222 |
Discover how graph databases can help you manage and query highly connected data. With this practical book, you’ll learn how to design and implement a graph database that brings the power of graphs to bear on a broad range of problem domains. Whether you want to speed up your response to user queries or build a database that can adapt as your business evolves, this book shows you how to apply the schema-free graph model to real-world problems. Learn how different organizations are using graph databases to outperform their competitors. With this book’s data modeling, query, and code examples, you’ll quickly be able to implement your own solution. Model data with the Cypher query language and property graph model Learn best practices and common pitfalls when modeling with graphs Plan and implement a graph database solution in test-driven fashion Explore real-world examples to learn how and why organizations use a graph database Understand common patterns and components of graph database architecture Use analytical techniques and algorithms to mine graph database information
Author | : Dave Bechberger |
Publisher | : Manning Publications |
Total Pages | : 336 |
Release | : 2020-11-24 |
Genre | : Computers |
ISBN | : 1617296376 |
Graph Databases in Action introduces you to graph database concepts by comparing them with relational database constructs. You'll learn just enough theory to get started, then progress to hands-on development. Discover use cases involving social networking, recommendation engines, and personalization. Summary Relationships in data often look far more like a web than an orderly set of rows and columns. Graph databases shine when it comes to revealing valuable insights within complex, interconnected data such as demographics, financial records, or computer networks. In Graph Databases in Action, experts Dave Bechberger and Josh Perryman illuminate the design and implementation of graph databases in real-world applications. You'll learn how to choose the right database solutions for your tasks, and how to use your new knowledge to build agile, flexible, and high-performing graph-powered applications! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Isolated data is a thing of the past! Now, data is connected, and graph databases—like Amazon Neptune, Microsoft Cosmos DB, and Neo4j—are the essential tools of this new reality. Graph databases represent relationships naturally, speeding the discovery of insights and driving business value. About the book Graph Databases in Action introduces you to graph database concepts by comparing them with relational database constructs. You'll learn just enough theory to get started, then progress to hands-on development. Discover use cases involving social networking, recommendation engines, and personalization. What's inside Graph databases vs. relational databases Systematic graph data modeling Querying and navigating a graph Graph patterns Pitfalls and antipatterns About the reader For software developers. No experience with graph databases required. About the author Dave Bechberger and Josh Perryman have decades of experience building complex data-driven systems and have worked with graph databases since 2014. Table of Contents PART 1 - GETTING STARTED WITH GRAPH DATABASES 1 Introduction to graphs 2 Graph data modeling 3 Running basic and recursive traversals 4 Pathfinding traversals and mutating graphs 5 Formatting results 6 Developing an application PART 2 - BUILDING ON GRAPH DATABASES 7 Advanced data modeling techniques 8 Building traversals using known walks 9 Working with subgraphs PART 3 - MOVING BEYOND THE BASICS 10 Performance, pitfalls, and anti-patterns 11 What's next: Graph analytics, machine learning, and resources
Author | : Ian Robinson |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 238 |
Release | : 2015-06-10 |
Genre | : Computers |
ISBN | : 1491930861 |
Discover how graph databases can help you manage and query highly connected data. With this practical book, you’ll learn how to design and implement a graph database that brings the power of graphs to bear on a broad range of problem domains. Whether you want to speed up your response to user queries or build a database that can adapt as your business evolves, this book shows you how to apply the schema-free graph model to real-world problems. This second edition includes new code samples and diagrams, using the latest Neo4j syntax, as well as information on new functionality. Learn how different organizations are using graph databases to outperform their competitors. With this book’s data modeling, query, and code examples, you’ll quickly be able to implement your own solution. Model data with the Cypher query language and property graph model Learn best practices and common pitfalls when modeling with graphs Plan and implement a graph database solution in test-driven fashion Explore real-world examples to learn how and why organizations use a graph database Understand common patterns and components of graph database architecture Use analytical techniques and algorithms to mine graph database information
Author | : Alessandro Negro |
Publisher | : Simon and Schuster |
Total Pages | : 494 |
Release | : 2021-10-05 |
Genre | : Computers |
ISBN | : 163835393X |
Upgrade your machine learning models with graph-based algorithms, the perfect structure for complex and interlinked data. Summary In Graph-Powered Machine Learning, you will learn: The lifecycle of a machine learning project Graphs in big data platforms Data source modeling using graphs Graph-based natural language processing, recommendations, and fraud detection techniques Graph algorithms Working with Neo4J Graph-Powered Machine Learning teaches to use graph-based algorithms and data organization strategies to develop superior machine learning applications. You’ll dive into the role of graphs in machine learning and big data platforms, and take an in-depth look at data source modeling, algorithm design, recommendations, and fraud detection. Explore end-to-end projects that illustrate architectures and help you optimize with best design practices. Author Alessandro Negro’s extensive experience shines through in every chapter, as you learn from examples and concrete scenarios based on his work with real clients! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Identifying relationships is the foundation of machine learning. By recognizing and analyzing the connections in your data, graph-centric algorithms like K-nearest neighbor or PageRank radically improve the effectiveness of ML applications. Graph-based machine learning techniques offer a powerful new perspective for machine learning in social networking, fraud detection, natural language processing, and recommendation systems. About the book Graph-Powered Machine Learning teaches you how to exploit the natural relationships in structured and unstructured datasets using graph-oriented machine learning algorithms and tools. In this authoritative book, you’ll master the architectures and design practices of graphs, and avoid common pitfalls. Author Alessandro Negro explores examples from real-world applications that connect GraphML concepts to real world tasks. What's inside Graphs in big data platforms Recommendations, natural language processing, fraud detection Graph algorithms Working with the Neo4J graph database About the reader For readers comfortable with machine learning basics. About the author Alessandro Negro is Chief Scientist at GraphAware. He has been a speaker at many conferences, and holds a PhD in Computer Science. Table of Contents PART 1 INTRODUCTION 1 Machine learning and graphs: An introduction 2 Graph data engineering 3 Graphs in machine learning applications PART 2 RECOMMENDATIONS 4 Content-based recommendations 5 Collaborative filtering 6 Session-based recommendations 7 Context-aware and hybrid recommendations PART 3 FIGHTING FRAUD 8 Basic approaches to graph-powered fraud detection 9 Proximity-based algorithms 10 Social network analysis against fraud PART 4 TAMING TEXT WITH GRAPHS 11 Graph-based natural language processing 12 Knowledge graphs
Author | : Tareq Abedrabbo |
Publisher | : Simon and Schuster |
Total Pages | : 441 |
Release | : 2014-12-05 |
Genre | : Computers |
ISBN | : 1638351996 |
Summary Neo4j in Action is a comprehensive guide to Neo4j, aimed at application developers and software architects. Using hands-on examples, you'll learn to model graph domains naturally with Neo4j graph structures. The book explores the full power of native Java APIs for graph data manipulation and querying. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Much of the data today is highly connected—from social networks to supply chains to software dependency management—and more connections are continually being uncovered. Neo4j is an ideal graph database tool for highly connected data. It is mature, production-ready, and unique in enabling developers to simply and efficiently model and query connected data. About the Book Neo4j in Action is a comprehensive guide to designing, implementing, and querying graph data using Neo4j. Using hands-on examples, you'll learn to model graph domains naturally with Neo4j graph structures. The book explores the full power of native Java APIs for graph data manipulation and querying. It also covers Cypher, Neo4j's graph query language. Along the way, you'll learn how to integrate Neo4j into your domain-driven app using Spring Data Neo4j, as well as how to use Neo4j in standalone server or embedded modes. Knowledge of Java basics is required. No prior experience with graph data or Neo4j is assumed. What's Inside Graph database patterns How to model data in social networks How to use Neo4j in your Java applications How to configure and set up Neo4j About the Authors Aleksa Vukotic is an architect specializing in graph data models. Nicki Watt, Dominic Fox, Tareq Abedrabbo, and Jonas Partner work at OpenCredo, a Neo Technology partner, and have been involved in many projects using Neo4j. Table of Contents PART 1 INTRODUCTION TO NEO4J A case for a Neo4j database Data modeling in Neo4j Starting development with Neo4j The power of traversals Indexing the data PART 2 APPLICATION DEVELOPMENT WITH NEO4J Cypher: Neo4j query language Transactions Traversals in depth Spring Data Neo4j PART 3 NEO4J IN PRODUCTION Neo4j: embedded versus server mode
Author | : Donald Ervin Knuth |
Publisher | : Addison-Wesley Professional |
Total Pages | : 0 |
Release | : 2009 |
Genre | : Combinatorial analysis |
ISBN | : 9780321606327 |
The Stanford GraphBase: A Platform for Combinatorial Computing represents the first efforts of Donald E. Knuth's preparation for Volume Four of The Art of Computer Programming. The book's first goal is to use examples to demonstrate the art of literate programming. Each example provides a programmatic essay that can be read and enjoyed as readily as it can be interpreted by machines. In these essays/programs, Knuth makes new contributions to several important algorithms and data structures, so the programs are of special interest for their content as well as for their style. The book's second goal is to provide a useful means for comparing combinatorial algorithms and for evaluating methods of combinatorial computing. To this end, Knuth's programs offer standard, freely available sets of data - the Stanford GraphBase - that may be used as benchmarks to test competing methods. The data sets are both interesting in themselves and applicable to a wide variety of problem domains. With objective tests, Knuth hopes to bridge the gap between theoretical computer scientists and programmers who have real problems to solve. As with all of Knuth's writings, this book is appreciated not only for the author's unmatched insight, but also for the fun and the challenge of his work. He illustrates many of the most significant and most beautiful combinatorial algorithms that are presently known and provides sample programs that can lead to hours of amusement. In showing how the Stanford GraphBase can generate an almost inexhaustible supply of challenging problems, some of which may lead to the discovery of new and improved algorithms, Knuth proposes friendly competitions. His own initial entries into such competitions are included in the book, and readers are challenged to do better. Features Includes new contributions to our understanding of important algorithms and data structures Provides a standard tool for evaluating combinatorial algorithms Demonstrates a more readable, more practical style of programming Challenges readers to surpass his own efficient algorithms 0201542757B04062001