Negative Capacitance Field Effect Transistors
Download Negative Capacitance Field Effect Transistors full books in PDF, epub, and Kindle. Read online free Negative Capacitance Field Effect Transistors ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Jian-Jia Chen |
Publisher | : Springer Nature |
Total Pages | : 181 |
Release | : 2020-07-30 |
Genre | : Technology & Engineering |
ISBN | : 3030474879 |
This Open Access book celebrates Professor Peter Marwedel's outstanding achievements in compilers, embedded systems, and cyber-physical systems. The contributions in the book summarize the content of invited lectures given at the workshop “Embedded Systems” held at the Technical University Dortmund in early July 2019 in honor of Professor Marwedel's seventieth birthday. Provides a comprehensive view from leading researchers with respect to the past, present, and future of the design of embedded and cyber-physical systems; Discusses challenges and (potential) solutions from theoreticians and practitioners on modeling, design, analysis, and optimization for embedded and cyber-physical systems; Includes coverage of model verification, communication, software runtime systems, operating systems and real-time computing.
Author | : Young Suh Song |
Publisher | : CRC Press |
Total Pages | : 167 |
Release | : 2023-10-31 |
Genre | : Technology & Engineering |
ISBN | : 1000933334 |
This book aims to provide information in the ever-growing field of low-power electronic devices and their applications in portable devices, wireless communication, sensor, and circuit domains. Negative Capacitance Field Effect Transistors: Physics, Design, Modeling and Applications discusses low-power semiconductor technology and addresses state-of-the-art techniques such as negative capacitance field effect transistors and tunnel field effect transistors. The book is split into three parts. The first part discusses the foundations of low-power electronics, including the challenges and demands and concepts such as subthreshold swing. The second part discusses the basic operations of negative capacitance field effect transistors (NCFETs) and tunnel field effect transistors (TFETs). The third part covers industrial applications including cryogenics and biosensors with NC-FET. This book is designed to be a one-stop guide for students and academic researchers, to understand recent trends in the IT industry and semiconductor industry. It will also be of interest to researchers in the field of nanodevices such as NC-FET, FinFET, tunnel FET, and device–circuit codesign.
Author | : Uwe Schroeder |
Publisher | : Woodhead Publishing |
Total Pages | : 572 |
Release | : 2019-03-27 |
Genre | : Technology & Engineering |
ISBN | : 0081024312 |
Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices covers all aspects relating to the structural and electrical properties of HfO2 and its implementation into semiconductor devices, including a comparison to standard ferroelectric materials. The ferroelectric and field-induced ferroelectric properties of HfO2-based films are considered promising for various applications, including non-volatile memories, negative capacitance field-effect-transistors, energy storage, harvesting, and solid-state cooling. Fundamentals of ferroelectric and piezoelectric properties, HfO2 processes, and the impact of dopants on ferroelectric properties are also extensively discussed in the book, along with phase transition, switching kinetics, epitaxial growth, thickness scaling, and more. Additional chapters consider the modeling of ferroelectric phase transformation, structural characterization, and the differences and similarities between HFO2 and standard ferroelectric materials. Finally, HfO2 based devices are summarized. - Explores all aspects of the structural and electrical properties of HfO2, including processes, modelling and implementation into semiconductor devices - Considers potential applications including FeCaps, FeFETs, NCFETs, FTJs and more - Provides comparison of an emerging ferroelectric material to conventional ferroelectric materials with insights to the problems of downscaling that conventional ferroelectrics face
Author | : Gennady Gildenblat |
Publisher | : Springer Science & Business Media |
Total Pages | : 531 |
Release | : 2010-06-22 |
Genre | : Technology & Engineering |
ISBN | : 9048186145 |
Most of the recent texts on compact modeling are limited to a particular class of semiconductor devices and do not provide comprehensive coverage of the field. Having a single comprehensive reference for the compact models of most commonly used semiconductor devices (both active and passive) represents a significant advantage for the reader. Indeed, several kinds of semiconductor devices are routinely encountered in a single IC design or in a single modeling support group. Compact Modeling includes mostly the material that after several years of IC design applications has been found both theoretically sound and practically significant. Assigning the individual chapters to the groups responsible for the definitive work on the subject assures the highest possible degree of expertise on each of the covered models.
Author | : D. Nirmal |
Publisher | : CRC Press |
Total Pages | : 303 |
Release | : 2021-12-10 |
Genre | : Technology & Engineering |
ISBN | : 1000475360 |
This book covers the fundamentals and significance of 2-D materials and related semiconductor transistor technologies for the next-generation ultra low power applications. It provides comprehensive coverage on advanced low power transistors such as NCFETs, FinFETs, TFETs, and flexible transistors for future ultra low power applications owing to their better subthreshold swing and scalability. In addition, the text examines the use of field-effect transistors for biosensing applications and covers design considerations and compact modeling of advanced low power transistors such as NCFETs, FinFETs, and TFETs. TCAD simulation examples are also provided. FEATURES Discusses the latest updates in the field of ultra low power semiconductor transistors Provides both experimental and analytical solutions for TFETs and NCFETs Presents synthesis and fabrication processes for FinFETs Reviews details on 2-D materials and 2-D transistors Explores the application of FETs for biosensing in the healthcare field This book is aimed at researchers, professionals, and graduate students in electrical engineering, electronics and communication engineering, electron devices, nanoelectronics and nanotechnology, microelectronics, and solid-state circuits.
Author | : Shubham Sahay |
Publisher | : John Wiley & Sons |
Total Pages | : 496 |
Release | : 2019-02-27 |
Genre | : Technology & Engineering |
ISBN | : 1119523532 |
A comprehensive one-volume reference on current JLFET methods, techniques, and research Advancements in transistor technology have driven the modern smart-device revolution—many cell phones, watches, home appliances, and numerous other devices of everyday usage now surpass the performance of the room-filling supercomputers of the past. Electronic devices are continuing to become more mobile, powerful, and versatile in this era of internet-of-things (IoT) due in large part to the scaling of metal-oxide semiconductor field-effect transistors (MOSFETs). Incessant scaling of the conventional MOSFETs to cater to consumer needs without incurring performance degradation requires costly and complex fabrication process owing to the presence of metallurgical junctions. Unlike conventional MOSFETs, junctionless field-effect transistors (JLFETs) contain no metallurgical junctions, so they are simpler to process and less costly to manufacture.JLFETs utilize a gated semiconductor film to control its resistance and the current flowing through it. Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an inclusive, one-stop referenceon the study and research on JLFETs This timely book covers the fundamental physics underlying JLFET operation, emerging architectures, modeling and simulation methods, comparative analyses of JLFET performance metrics, and several other interesting facts related to JLFETs. A calibrated simulation framework, including guidance on SentaurusTCAD software, enables researchers to investigate JLFETs, develop new architectures, and improve performance. This valuable resource: Addresses the design and architecture challenges faced by JLFET as a replacement for MOSFET Examines various approaches for analytical and compact modeling of JLFETs in circuit design and simulation Explains how to use Technology Computer-Aided Design software (TCAD) to produce numerical simulations of JLFETs Suggests research directions and potential applications of JLFETs Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an essential resource for CMOS device design researchers and advanced students in the field of physics and semiconductor devices.
Author | : Karin M. Rabe |
Publisher | : Springer Science & Business Media |
Total Pages | : 395 |
Release | : 2007-07-20 |
Genre | : Technology & Engineering |
ISBN | : 3540345914 |
The past two decades have witnessed revolutionary breakthroughs in the understanding of ferroelectric materials, both from the perspective of theory and experiment. This book addresses the paradigmatic shifts in understanding brought about by these breakthroughs, including the consideration of novel fabrication methods and nanoscale applications of these materials, and new theoretical methods such as the effective Hamiltonian approach and density functional theory.
Author | : Yogesh Singh Chauhan |
Publisher | : Academic Press |
Total Pages | : 305 |
Release | : 2015-03-17 |
Genre | : Technology & Engineering |
ISBN | : 0124200850 |
This book is the first to explain FinFET modeling for IC simulation and the industry standard – BSIM-CMG - describing the rush in demand for advancing the technology from planar to 3D architecture, as now enabled by the approved industry standard. The book gives a strong foundation on the physics and operation of FinFET, details aspects of the BSIM-CMG model such as surface potential, charge and current calculations, and includes a dedicated chapter on parameter extraction procedures, providing a step-by-step approach for the efficient extraction of model parameters. With this book you will learn: - Why you should use FinFET - The physics and operation of FinFET - Details of the FinFET standard model (BSIM-CMG) - Parameter extraction in BSIM-CMG - FinFET circuit design and simulation - Authored by the lead inventor and developer of FinFET, and developers of the BSIM-CM standard model, providing an experts' insight into the specifications of the standard - The first book on the industry-standard FinFET model - BSIM-CMG
Author | : Ekta Goel, Archana Pandey |
Publisher | : Bentham Science Publishers |
Total Pages | : 212 |
Release | : 2023-12-20 |
Genre | : Technology & Engineering |
ISBN | : 9815165658 |
Nanoscale Field Effect Transistors: Emerging Applications is a comprehensive guide to understanding, simulating, and applying nanotechnology for design and development of specialized transistors. This book provides in-depth information on the modeling, simulation, characterization, and fabrication of semiconductor FET transistors. The book contents are structured into chapters that explain concepts with simple language and scientific references. The core of the book revolves around the fundamental physics that underlie the design of solid-state nanostructures and the optimization of these nanoscale devices for real-time applications. Readers will learn how to achieve superior performance in terms of reduced size and weight, enhanced subthreshold characteristics, improved switching efficiency, and minimal power consumption. Key Features: Quick summaries: Each chapter provides an introduction and summary to explain concepts in a concise manner. In-Depth Analysis: This book provides an extensive exploration of the theory and practice of nanoscale materials and devices, offering a detailed understanding of the technical aspects of Nano electronic FET transistors. Multidisciplinary Approach: It discusses various aspects of nanoscale materials and devices for applications such as quantum computation, biomedical applications, energy generation and storage, environmental protection, and more. It showcases how nanoscale FET devices are reshaping multiple industries. References: Chapters include references that encourage advanced readers to further explore key topics. Designed for a diverse audience, this book caters to students, academics and advanced readers interested in learning about Nano FET devices. Readership Students, academics and advanced readers
Author | : P. Karuppusamy |
Publisher | : Springer Nature |
Total Pages | : 683 |
Release | : 2021-01-25 |
Genre | : Technology & Engineering |
ISBN | : 9811586772 |
This book includes novel and state-of-the-art research discussions that articulate and report all research aspects, including theoretical and experimental prototypes and applications that incorporate sustainability into emerging applications. In recent years, sustainability and information and communication technologies (ICT) are highly intertwined, where sustainability resources and its management has attracted various researchers, stakeholders, and industrialists. The energy-efficient communication technologies have revolutionized the various smart applications like smart cities, healthcare, entertainment, and business. The book discusses and articulates emerging challenges in significantly reducing the energy consumption of communication systems and also explains development of a sustainable and energy-efficient mobile and wireless communication network. It includes best selected high-quality conference papers in different fields such as internet of things, cloud computing, data mining, artificial intelligence, machine learning, autonomous systems, deep learning, neural networks, renewable energy sources, sustainable wireless communication networks, QoS, network sustainability, and many other related areas.