Near Rings, Fuzzy Ideals, and Graph Theory

Near Rings, Fuzzy Ideals, and Graph Theory
Author: Bhavanari Satyanarayana
Publisher: CRC Press
Total Pages: 482
Release: 2013-05-21
Genre: Computers
ISBN: 1439873100

Near Rings, Fuzzy Ideals, and Graph Theory explores the relationship between near rings and fuzzy sets and between near rings and graph theory. It covers topics from recent literature along with several characterizations. After introducing all of the necessary fundamentals of algebraic systems, the book presents the essentials of near rings theory, relevant examples, notations, and simple theorems. It then describes the prime ideal concept in near rings, takes a rigorous approach to the dimension theory of N-groups, gives some detailed proofs of matrix near rings, and discusses the gamma near ring, which is a generalization of both gamma rings and near rings. The authors also provide an introduction to fuzzy algebraic systems, particularly the fuzzy ideals of near rings and gamma near rings. The final chapter explains important concepts in graph theory, including directed hypercubes, dimension, prime graphs, and graphs with respect to ideals in near rings. Near ring theory has many applications in areas as diverse as digital computing, sequential mechanics, automata theory, graph theory, and combinatorics. Suitable for researchers and graduate students, this book provides readers with an understanding of near ring theory and its connection to fuzzy ideals and graph theory.

The Theory of Near-Rings

The Theory of Near-Rings
Author: Robert Lockhart
Publisher: Springer Nature
Total Pages: 555
Release: 2021-11-14
Genre: Mathematics
ISBN: 3030817555

This book offers an original account of the theory of near-rings, with a considerable amount of material which has not previously been available in book form, some of it completely new. The book begins with an introduction to the subject and goes on to consider the theory of near-fields, transformation near-rings and near-rings hosted by a group. The bulk of the chapter on near-fields has not previously been available in English. The transformation near-rings chapters considerably augment existing knowledge and the chapters on product hosting are essentially new. Other chapters contain original material on new classes of near-rings and non-abelian group cohomology. The Theory of Near-Rings will be of interest to researchers in the subject and, more broadly, ring and representation theorists. The presentation is elementary and self-contained, with the necessary background in group and ring theory available in standard references.

Near-Rings and Near-Fields

Near-Rings and Near-Fields
Author: Yuen Fong
Publisher: Springer Science & Business Media
Total Pages: 271
Release: 2012-12-06
Genre: Mathematics
ISBN: 9401103593

Near-Rings and Near-Fields opens with three invited lectures on different aspects of the history of near-ring theory. These are followed by 26 papers reflecting the diversity of the subject in regard to geometry, topological groups, automata, coding theory and probability, as well as the purely algebraic structure theory of near-rings. Audience: Graduate students of mathematics and algebraists interested in near-ring theory.

Smarandache Near-Rings

Smarandache Near-Rings
Author: W. B. Vasantha Kandasamy
Publisher: Infinite Study
Total Pages: 201
Release: 2002
Genre: Mathematics
ISBN: 1931233667

Generally, in any human field, a Smarandache Structure on a set A means a weak structure W on A such that there exists a proper subset B in A which is embedded with a stronger structure S. These types of structures occur in our everyday life, that's why we study them in this book. Thus, as a particular case: A Near-Ring is a non-empty set N together with two binary operations '+' and '.' such that (N, +) is a group (not necessarily abelian), (N, .) is a semigroup. For all a, b, c in N we have (a + b) . c = a . c + b . c. A Near-Field is a non-empty set P together with two binary operations '+' and '.' such that (P, +) is a group (not necessarily abelian), (P \ {0}, .) is a group. For all a, b, c I P we have (a + b) . c = a . c + b . c. A Smarandache Near-ring is a near-ring N which has a proper subset P in N, where P is a near-field (with respect to the same binary operations on N).

Dimensions of Ring Theory

Dimensions of Ring Theory
Author: C. Nastasescu
Publisher: Springer Science & Business Media
Total Pages: 382
Release: 1987-04-30
Genre: Mathematics
ISBN: 9789027724618

Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Gad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of s9phistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.

Nearrings, Nearfields And Related Topics

Nearrings, Nearfields And Related Topics
Author: Kuncham Syam Prasad
Publisher: World Scientific
Total Pages: 324
Release: 2016-11-28
Genre: Mathematics
ISBN: 981320737X

Recent developments in various algebraic structures and the applications of those in different areas play an important role in Science and Technology. One of the best tools to study the non-linear algebraic systems is the theory of Near-rings.The forward note by G

Rings Close to Regular

Rings Close to Regular
Author: A.A. Tuganbaev
Publisher: Springer Science & Business Media
Total Pages: 363
Release: 2013-03-09
Genre: Mathematics
ISBN: 9401598789

Preface All rings are assumed to be associative and (except for nilrings and some stipulated cases) to have nonzero identity elements. A ring A is said to be regular if for every element a E A, there exists an element b E A with a = aba. Regular rings are well studied. For example, [163] and [350] are devoted to regular rings. A ring A is said to be tr-regular if for every element a E A, there is an element n b E A such that an = anba for some positive integer n. A ring A is said to be strongly tr-regular if for every a E A, there is a positive integer n with n 1 n an E a + An Aa +1. It is proved in [128] that A is a strongly tr-regular ring if and only if for every element a E A, there is a positive integer m with m 1 am E a + A. Every strongly tr-regular ring is tr-regular [38]. If F is a division ring and M is a right vector F-space with infinite basis {ei}~l' then End(MF) is a regular (and tr-regular) ring that is not strongly tr-regular. The factor ring of the ring of integers with respect to the ideal generated by the integer 4 is a strongly tr-regular ring that is not regular.

Finite Commutative Rings and Their Applications

Finite Commutative Rings and Their Applications
Author: Gilberto Bini
Publisher: Springer Science & Business Media
Total Pages: 181
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1461509572

Foreword by Dieter Jungnickel Finite Commutative Rings and their Applications answers a need for an introductory reference in finite commutative ring theory as applied to information and communication theory. This book will be of interest to both professional and academic researchers in the fields of communication and coding theory. The book is a concrete and self-contained introduction to finite commutative local rings, focusing in particular on Galois and Quasi-Galois rings. The reader is provided with an active and concrete approach to the study of the purely algebraic structure and properties of finite commutative rings (in particular, Galois rings) as well as to their applications to coding theory. Finite Commutative Rings and their Applications is the first to address both theoretical and practical aspects of finite ring theory. The authors provide a practical approach to finite rings through explanatory examples, thereby avoiding an abstract presentation of the subject. The section on Quasi-Galois rings presents new and unpublished results as well. The authors then introduce some applications of finite rings, in particular Galois rings, to coding theory, using a solid algebraic and geometric theoretical background.

Skew Fields

Skew Fields
Author: Paul Moritz Cohn
Publisher: Cambridge University Press
Total Pages: 522
Release: 1995-07-28
Genre: Mathematics
ISBN: 0521432170

Non-commutative fields (also called skew fields or division rings) have not been studied as thoroughly as their commutative counterparts and most accounts have hitherto been confined to division algebras, that is skew fields finite-dimensional over their centre. Based on the author's LMS lecture note volume Skew Field Constructions, the present work offers a comprehensive account of skew fields. The axiomatic foundation and a precise description of the embedding problem are followed by an account of algebraic and topological construction methods, in particular, the author's general embedding theory is presented with full proofs, leading to the construction of skew fields. The powerful coproduct theorems of G. M. Bergman are proved here as well as the properties of the matrix reduction functor, a useful but little-known construction providing a source of examples and counter-examples. The construction and basic properties of existentially closed skew fields are given, leading to an example of a model class with an infinite forcing companion which is not axiomatizable. The treatment of equations over skew fields has been simplified and extended by the use of matrix methods, and the beginnings of non-commutative algebraic geometry are presented, with a precise account of the problems that need to be overcome for a satisfactory theory. A separate chapter describes valuations and orderings on skew fields, with a construction applicable to free fields. Numerous exercises test the reader's understanding, presenting further aspects and open problems in concise form, and notes and comments at the ends of chapters provide historical background.