Natural Polymers And Biopolymers Ii
Download Natural Polymers And Biopolymers Ii full books in PDF, epub, and Kindle. Read online free Natural Polymers And Biopolymers Ii ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Sylvain Caillol |
Publisher | : MDPI |
Total Pages | : 472 |
Release | : 2021-05-05 |
Genre | : Science |
ISBN | : 3036504044 |
BioPolymers could be either natural polymers – polymer naturally occurring in Nature, such as cellulose or starch…, or biobased polymers that are artificially synthesized from natural resources. Since the late 1990s, the polymer industry has faced two serious problems: global warming and anticipation of limitation to the access to fossil resources. One solution consists in the use of sustainable resources instead of fossil-based resources. Hence, biomass feedstocks are a promising resource and biopolymers are one of the most dynamic polymer area. Additionally, biodegradability is a special functionality conferred to a material, bio-based or not. Very recently, facing the awareness of the volumes of plastic wastes, biodegradable polymers are gaining increasing attention from the market and industrial community. This special issue of Molecules deals with the current scientific and industrial challenges of Natural and Biobased Polymers, through the access of new biobased monomers, improved thermo-mechanical properties, and by substitution of harmful substances. This themed issue can be considered as collection of highlights within the field of Natural Polymers and Biobased Polymers which clearly demonstrate the increased interest in this field. We hope that this will inspire researchers to further develop this area and thus contribute to futures more sustainable society.”
Author | : Sangamesh G. Kum bar |
Publisher | : Newnes |
Total Pages | : 421 |
Release | : 2014-01-21 |
Genre | : Technology & Engineering |
ISBN | : 0123972906 |
Polymers are important and attractive biomaterials for researchers and clinical applications due to the ease of tailoring their chemical, physical and biological properties for target devices. Due to this versatility they are rapidly replacing other classes of biomaterials such as ceramics or metals. As a result, the demand for biomedical polymers has grown exponentially and supports a diverse and highly monetized research community. Currently worth $1.2bn in 2009 (up from $650m in 2000), biomedical polymers are expected to achieve a CAGR of 9.8% until 2015, supporting a current research community of approximately 28,000+. Summarizing the main advances in biopolymer development of the last decades, this work systematically covers both the physical science and biomedical engineering of the multidisciplinary field. Coverage extends across synthesis, characterization, design consideration and biomedical applications. The work supports scientists researching the formulation of novel polymers with desirable physical, chemical, biological, biomechanical and degradation properties for specific targeted biomedical applications. - Combines chemistry, biology and engineering for expert and appropriate integration of design and engineering of polymeric biomaterials - Physical, chemical, biological, biomechanical and degradation properties alongside currently deployed clinical applications of specific biomaterials aids use as single source reference on field. - 15+ case studies provides in-depth analysis of currently used polymeric biomaterials, aiding design considerations for the future
Author | : Sabu Thomas |
Publisher | : CRC Press |
Total Pages | : 446 |
Release | : 2012-07-18 |
Genre | : Science |
ISBN | : 1926895169 |
Natural Polymers, Biopolymers, Biomaterials, and Their Composites, Blends, and IPNs focuses on the recent advances in natural polymers, biopolymers, biomaterials, and their composites, blends, and IPNs. Biobased polymer blends and composites occupy a unique position in the dynamic world of new biomaterials. The growing need for lubricious coatings and surfaces in medical devices—an outcome of the move from invasive to noninvasive medicines/procedures—is playing a major role in the advancement of biomaterials technology. Natural polymers have attained their cutting-edge technology through various platforms, yet there is a lot of novel information about them that is discussed in the book. This important work covers topics such as chitosan composites for biomedical applications and wastewater treatment, coal biotechnology, biomedical and related applications of second generation polyamidoamines, silk fibers, PEG hydrogels, bamboo fiber reinforced PE composites, jute/polyester composites, magnetic biofoams, and many other interesting aspects of importance to polymer research today.
Author | : Yu Chen |
Publisher | : Elsevier |
Total Pages | : 553 |
Release | : 2019-10-23 |
Genre | : Technology & Engineering |
ISBN | : 0128166185 |
Hydrogels Based on Natural Polymers presents the latest research on natural polymer-based hydrogels, covering fundamentals, preparation methods, synthetic pathways, advanced properties, major application areas, and novel characterization techniques. The advantages and disadvantages of each natural polymer-based hydrogel are also discussed, enabling preparation tactics for specific properties and applications. Sections cover fundamentals, development, characteristics, structures and properties. Additional chapters cover presentation methods and properties based on natural polymers, including physical and chemical properties, stimuli-responsive properties, self-healing properties, and biological properties. The final section presents major applications areas, including the biomedical field, agriculture, water treatments, and the food industry. This is a highly valuable resource for academic researchers, scientists and advanced students working with hydrogels and natural polymers, as well as across the fields of polymer science, polymer chemistry, plastics engineering, biopolymers and biomaterials. The detailed information will also be of great interest to scientists and R&D professionals, product designers, technicians and engineers across industries. - Provides systematic coverage of all aspects of hydrogels based on natural polymers, including fundamentals, preparation methods, properties and characterization - Offers a balanced assessment of the specific properties and possibilities offered by different natural polymer-based hydrogels, drawing on innovative research - Examines cutting-edge applications across biomedicine, agriculture, water treatments, and the food industry
Author | : S.C. Moldoveanu |
Publisher | : Elsevier |
Total Pages | : 509 |
Release | : 1998-11-11 |
Genre | : Science |
ISBN | : 0080527167 |
Analytical pyrolysis is one of the many tools utilized for the study of natural organic polymers. This books describes in three parts the methodology of analytical pyrolysis, the results of pyrolysis for a variety of biopolymers, and several practical applications of analytical pyrolysis on natural organic polymers and their composite materials. Analytical pyrolysis methodology covers two distinct subjects, the instrumentation used for pyrolysis and the analytical methods that are applied for the analysis of the pyrolysis products. A variety of pyrolytic techniques and of analytical instruments commonly coupled with pyrolysis devices are given.The description of the results of pyrolysis for biopolymers and some chemically modified natural organic polymers is the core of the book. The main pyrolysis products of numerous compounds as well as the proposed mechanisms for their pyrolysis are described. In this part an attempt is made to present as much as possible the chemistry of the pyrolytic process of natural organic polymers.The applications of analytical pyrolysis include topics such as polymer detection used for example in forensic science, structure elucidation of specific polymers, and identification of small molecules present in polymers (anti-oxidants, plasticizers, etc.). Also, the degradation during heating is a subject of major interest in many practical applications regarding the physical properties of polymers. The applications to composite polymeric materials are in the fields of classification of microorganisms, study of a variety of biological samples, study of fossil materials, etc. Analytical pyrolysis can also be used for obtaining information on the burning area generate pyrolysates that have complex compositions. Their analysis is important in connection with health issues, environmental problems, and taste of food and cigarettes.Features of this book:• Presents analytical pyrolysis as a uniform subject and not as a conglomerate of scientific papers.• Puts together in an organized manner a large volume of available information in this specific field.• Provides original results which address subjects with relatively scarce information in literature.• Gives original views on subjects such as the parallel between the pyrolytic process and the ion fragmentation in mass spectrometry.• Includes the role of pyrolysis in the burning process.The three parts of the book are covered in 18 chapters, each divided into sections. Some sections are further divided by particular subjects. References are given for each chapter, and an effort has been made to include as much as possible from the available representative information. A few unpublished personal results are also included.
Author | : Ololade Olatunji |
Publisher | : Springer |
Total Pages | : 372 |
Release | : 2015-12-24 |
Genre | : Technology & Engineering |
ISBN | : 3319264141 |
This book introduces the most recent innovations in natural polymer applications in the food, construction, electronics, biomedical, pharmaceutical, and engineering industries. The authors provide perspectives from their respective range of industries covering classification, extraction, modification, and application of natural polymers from various sources in nature. They discuss the techniques used in analysis of natural polymers in various systems incorporating natural polymers as well as their intrinsic properties.
Author | : Maya J. John |
Publisher | : Royal Society of Chemistry |
Total Pages | : 333 |
Release | : 2012 |
Genre | : Science |
ISBN | : 1849734038 |
"In the search for sustainable materials, natural polymers present an attractive alternative for many applications compared to their synthetic counterparts derived from petrochemicals. The two volume set, Natural Polymers, covers the synthesis, characterisation and applications of key natural polymeric systems including their morphology, structure, dynamics and properties. Volume one focuses on natural polymer composites, including both natural and protein fibres, and volume two on natural polymer nanocomposites. The first volume examines the characterization, life cycle assessment and new sources of natural fibres and their potential as a replacement for synthetic fibres in industrial applications. It then explores the important advancements in the field of wool, silk, spidersilk and mussel byssus fibres. The second volume looks at the properties and characterization of cellulose, chitosan, furanic, starch, wool and silk nanocomposites and the potential industrial applications of natural polymer nanocomposites"-- Provided by publisher.
Author | : Saiqa Ikram |
Publisher | : Nova Science Publishers |
Total Pages | : 0 |
Release | : 2017 |
Genre | : Biopolymers |
ISBN | : 9781536104264 |
The book Natural Polymers: Derivatives, Blends and Composites Volume II is an edited volume comprised of fifteen chapters from different experts working in the area of natural polymers. Natural polymers are finding applications in fields of packaging, medicine, pharmaceutics, biomedicine, textiles and many others. This book gives detailed insight into all aspects of natural polymers to the latest trends in the development of new products. This book will hopefully be supportive to scientists, researchers, academicians and students in different disciplines. Key features: 1. Describes various derivatives of natural polymers (ie: composites, nanoparticles, hydrogels, etc.); 2. Self-contained chapters on starch, chitosan, alginate, bovine serum albumin, among others; 3. Covers a broad range of natural polymer applications, from packaging to biomedicine.
Author | : Ravin Narain |
Publisher | : Elsevier |
Total Pages | : 488 |
Release | : 2020-06-16 |
Genre | : Technology & Engineering |
ISBN | : 0128168072 |
Polymer Science and Nanotechnology: Fundamentals and Applications brings together the latest advances in polymer science and nanoscience. Sections explain the fundamentals of polymer science, including key aspects and methods in terms of molecular structure, synthesis, characterization, microstructure, phase structure and processing and properties before discussing the materials of particular interest and utility for novel applications, such as hydrogels, natural polymers, smart polymers and polymeric biomaterials. The second part of the book examines essential techniques in nanotechnology, with an emphasis on the utilization of advanced polymeric materials in the context of nanoscience. Throughout the book, chapters are prepared so that materials and products can be geared towards specific applications. Two chapters cover, in detail, major application areas, including fuel and solar cells, tissue engineering, drug and gene delivery, membranes, water treatment and oil recovery. - Presents the latest applications of polymers and polymeric nanomaterials, across energy, biomedical, pharmaceutical, and environmental fields - Contains detailed coverage of polymer nanocomposites, polymer nanoparticles, and hybrid polymer-metallic nanoparticles - Supports an interdisciplinary approach, enabling readers from different disciplines to understand polymer science and nanotechnology and the interface between them
Author | : Rongchun Zhang |
Publisher | : Royal Society of Chemistry |
Total Pages | : 590 |
Release | : 2019-07-29 |
Genre | : Science |
ISBN | : 178801863X |
Since the introduction of FT-NMR spectroscopy around five decades ago, NMR has achieved significant advances in hardware and methodologies, accompanied with the enhancement of spectral resolution and signal sensitivity. Rapid developments in the polymers field mean that accurate and quantitative characterization of polymer structures and dynamics is the keystone for precisely regulating and controlling the physical and chemical properties of the polymer. This book specifically focuses on NMR investigation of complex polymers for the polymer community as well as NMR spectroscopists, and will push the development of both fields. It covers the latest advances, for example high field DNP and ultrafast MAS methodologies, and show how these novel NMR methods characterize various synthetic and natural polymers.