Nanostructured Materials Engineering and Characterization for Battery Applications

Nanostructured Materials Engineering and Characterization for Battery Applications
Author: Amadou Belal Gueye
Publisher: Elsevier
Total Pages: 715
Release: 2024-06-21
Genre: Technology & Engineering
ISBN: 0323914217

Nanostructured Materials Engineering and Characterization for Battery Applications is designed to help solve fundamental and applied problems in the field of energy storage. Broken up into four separate sections, the book begins with a discussion of the fundamental electrochemical concepts in the field of energy storage. Other sections look at battery materials engineering such as cathodes, electrolytes, separators and anodes and review various battery characterization methods and their applications. The book concludes with a review of the practical considerations and applications of batteries.This will be a valuable reference source for university professors, researchers, undergraduate and postgraduate students, as well as scientists working primarily in the field of materials science, applied chemistry, applied physics and nanotechnology. - Presents practical consideration for battery usage such as LCA, recycling and green batteries - Covers battery characterization techniques including electrochemical methods, microscopy, spectroscopy and X-ray methods - Explores battery models and computational materials design theories

Nanostructured Materials for Energy Related Applications

Nanostructured Materials for Energy Related Applications
Author: Saravanan Rajendran
Publisher: Springer
Total Pages: 310
Release: 2019-02-11
Genre: Science
ISBN: 3030045005

This book describes the role and fundamental aspects of the diverse ranges of nanostructured materials for energy applications in a comprehensive manner. Advanced nanomaterial is an important and interdisciplinary field which includes science and technology. This work thus gives the reader an in depth analysis focussed on particular nanomaterials and systems applicable for technologies such as clean fuel, hydrogen generation, absorption and storage, supercapacitors, battery applications and more. Furthermore, it not only aims to exploit certain nanomaterials for technology transfer, but also exploits a wide knowledge on avenues such as biomass-derived nanomaterials, carbon dioxide conversions into renewable fuel chemicals using nanomaterials. These are the areas with lacunae that demand more research and application.

Advanced Characterization Of Nanostructured Materials: Probing The Structure And Dynamics With Synchrotron X-rays And Neutrons

Advanced Characterization Of Nanostructured Materials: Probing The Structure And Dynamics With Synchrotron X-rays And Neutrons
Author: Sunil K Sinha
Publisher: World Scientific
Total Pages: 430
Release: 2021-03-23
Genre: Science
ISBN: 9811231524

Advanced Characterization of Nanostructured Materials — Probing the Structure and Dynamics with Synchrotron X-Rays and Neutrons is a collection of chapters which review the characterization of the structure and internal dynamics of a wide variety of nanostructured materials using various synchrotron X-ray and neutron scattering techniques. It is intended for graduate students and researchers who might be interested in learning about and applying these methods. The authors are well-known practitioners in their fields of research who provide detailed and authoritative accounts of how these techniques have been applied to study systems ranging from thin films and monolayers on solid surfaces and at liquid-air, liquid-liquid and solid-liquid interfaces; nanostructured composite materials; battery materials, and catalytic materials. While there have been a great many books published on nanoscience, there are relatively few that have discussed in one volume detailed synchrotron X-ray and neutron methods for advanced characterization of nanomaterials in thin films, composite materials, catalytic and battery materials and at interfaces. This book should provide an incentive and a reference for researchers in nanomaterials for using these techniques as a powerful way to characterize their samples. It should also help to popularize the use of synchrotron and neutron facilities by the nanoscience community.

Nanomaterials

Nanomaterials
Author: Deborah M. Kane
Publisher: CRC Press
Total Pages: 413
Release: 2016-02-22
Genre: Medical
ISBN: 9814669733

Nanomaterials: Science and Applications reports up-to-the-minute research on nanoparticles for drug delivery and applications in nanomedicine, nanoelectronics, and microelectromechanical systems (MEMS) for biosensors; melanin as a nano-based future material; nanostructured materials for solar cell applications; the world of quantum dots illustrated

Exploring Nanomaterial Synthesis, Characterization, and Applications

Exploring Nanomaterial Synthesis, Characterization, and Applications
Author: Ramaswamy, Krishnaraj
Publisher: IGI Global
Total Pages: 654
Release: 2024-10-22
Genre: Science
ISBN:

Nanomaterials, due to their tiny size and exceptional characteristics, are leading the way in scientific innovation, marking the beginning of a new era of technological progress and offering solutions to critical challenges faced by humanity. From their origin and theoretical foundations to their combination and extensive practical uses, the exploration of nanomaterials encompasses a wide range of knowledge and profound understanding, providing valuable perspectives on their revolutionary influence on different sectors of the economy. Nanomaterials possess distinctive characteristics, including enhanced strength, chemical reactivity, and electrical conductivity, distinguishing them from their larger counterparts. These characteristics stimulate innovative uses and improve current technologies, making them crucial in advancing engineering, medicine, energy solutions, and environmental sustainability. Exploring Nanomaterial Synthesis, Characterization, and Applications focuses on the interdisciplinary aspects of nanomaterials research and highlights their contributions to the advancement of medical science. This book offers a comprehensive overview of the present state of nanomaterial science and provide a glimpse into its promising future. Covering topics such as biosensing, energy storage, and pharmaceutical technology, this book is an excellent resource for academicians, researchers, graduate and postgraduate students, industry professionals, engineers, product developers, medical practitioners, policymakers, and more.

Nanostructured Materials for Next-Generation Energy Storage and Conversion

Nanostructured Materials for Next-Generation Energy Storage and Conversion
Author: Qiang Zhen
Publisher: Springer Nature
Total Pages: 497
Release: 2019-10-10
Genre: Technology & Engineering
ISBN: 3662586754

Volume 3 of a 4-volume series is a concise, authoritative and an eminently readable and enjoyable experience related to lithium ion battery design, characterization and usage for portable and stationary power. Although the major focus is on lithium metal oxides or transition metal oxide as alloys, the discussion of fossil fuels is also presented where appropriate. This monograph is written by recognized experts in the field, and is both timely and appropriate as this decade will see application of lithium as an energy carrier, for example in the transportation sector. This Volume focuses on the fundamentals related to batteries using the latest research in the field of battery physics, chemistry, and electrochemistry. The research summarised in this book by leading experts is laid out in an easy-to-understand format to enable the layperson to grasp the essence of the technology, its pitfalls and current challenges in high-power Lithium battery research. After introductory remarks on policy and battery safety, a series of monographs are offered related to fundamentals of lithium batteries, including, theoretical modeling, simulation and experimental techniques used to characterize electrode materials, both at the material composition, and also at the device level. The different properties specific to each component of the batteries are discussed in order to offer tradeoffs between power and energy density, energy cycling, safety and where appropriate end-of-life disposal. Parameters affecting battery performance and cost, longevity using newer metal oxides, different electrolytes are also reviewed in the context of safety concerns and in relation to the solid-electrolyte interface. Separators, membranes, solid-state electrolytes, and electrolyte additives are also reviewed in light of safety, recycling, and high energy endurance issues. The book is intended for a wide audience, such as scientists who are new to the field, practitioners, as well as students in the STEM and STEP fields, as well as students working on batteries. The sections on safety and policy would be of great interest to engineers and technologists who want to obtain a solid grounding in the fundamentals of battery science arising from the interaction of electrochemistry, solid-state materials science, surfaces, and interfaces.

Emerging Nanotechnologies in Rechargeable Energy Storage Systems

Emerging Nanotechnologies in Rechargeable Energy Storage Systems
Author: Lide M Rodriguez-Martinez
Publisher: William Andrew
Total Pages: 348
Release: 2017-02-06
Genre: Technology & Engineering
ISBN: 0323429963

Emerging Nanotechnologies in Rechargeable Energy Storage Systems addresses the technical state-of-the-art of nanotechnology for rechargeable energy storage systems. Materials characterization and device-modeling aspects are covered in detail, with additional sections devoted to the application of nanotechnology in batteries for electrical vehicles. In the later part of the book, safety and regulatory issues are thoroughly discussed. Users will find a valuable source of information on the latest developments in nanotechnology in rechargeable energy storage systems. This book will be of great use to researchers and graduate students in the fields of nanotechnology, electrical energy storage, and those interested in materials and electrochemical cell development. - Gives readers working in the rechargeable energy storage sector a greater awareness on how novel nanotechnology oriented methods can help them develop higher-performance batteries and supercapacitor systems - Provides focused coverage of the development, process, characterization techniques, modeling, safety and applications of nanomaterials for rechargeable energy storage systems - Presents readers with an informed choice in materials selection for rechargeable energy storage devices

X-ray Characterization of Nanostructured Energy Materials by Synchrotron Radiation

X-ray Characterization of Nanostructured Energy Materials by Synchrotron Radiation
Author: Mehdi Khodaei
Publisher: BoD – Books on Demand
Total Pages: 127
Release: 2017-03-22
Genre: Science
ISBN: 9535130137

Nowadays, nanomaterials are attracting huge attentions not only from a basic research point of view but also for their potential applications. Since finding the structure-property-processing relationships can open new windows in the application of materials, the material characterizations play a crucial role in the research and development of materials science. The increasing demand for energy with the necessity to find alternative renewable and sustainable energy sources leads to the rapid growth in attention to energy materials. In this book, the results of some outstanding researches on synchrotron-based characterization of nanostructured materials related to energy applications are presented.

Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications

Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications
Author: Srabanti Ghosh
Publisher: John Wiley & Sons
Total Pages: 38
Release: 2021-06-01
Genre: Technology & Engineering
ISBN: 3527345574

A timely overview of fundamental and advanced topics of conjugated polymer nanostructures Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications is a comprehensive reference on conjugated polymers for energy applications. Distinguished academic and editor Srabanti Ghosh offers readers a broad overview of the synthesis, characterization, and energy-related applications of nanostructures based on conjugated polymers. The book includes novel approaches and presents an interdisciplinary perspective rooted in the interfacing of polymer and synthetic chemistry, materials science, organic chemistry, and analytical chemistry. This book provides complete descriptions of conjugated polymer nanostructures and polymer-based hybrid materials for energy conversion, water splitting, and the degradation of organic pollutants. Photovoltaics, solar cells, and energy storage devices such as supercapacitors, lithium ion battery electrodes, and their associated technologies are discussed, as well. Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications covers both the fundamental topics and the most recent advances in this rapidly developing area, including: The design and characterization of conjugated polymer nanostructures, including the template-free and chemical synthesis of polymer nanostructures Conjugated polymer nanostructures for solar energy conversion and environmental protection, including the use of conjugated polymer-based nanocomposites as photocatalysts Conjugated polymer nanostructures for energy storage, including the use of nanocomposites as electrode materials The presentation of different and novel methods of utilizing conjugated polymer nanostructures for energy applications Perfect for materials scientists, polymer chemists, and physical chemists, Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications also belongs on the bookshelves of organic chemists and any other practicing researchers, academics, or professionals whose work touches on these highly versatile and useful structures.