Nanostructured Carbon for Energy Generation, Storage, and Conversion

Nanostructured Carbon for Energy Generation, Storage, and Conversion
Author: V. I. Kodolov
Publisher: CRC Press
Total Pages: 270
Release: 2023-05-12
Genre: Science
ISBN: 1000637948

Carbon materials play a significant role in the development of alternative clean and sustainable energy technologies. This new volume focuses on the new applications of different carbon nanomaterials and graphene-carbon-nanotube hybrids for energy generation, energy storage, and energy conversion. It presents a comprehensive overview of recent developments on carbon-based nanomaterials with a focus on sustainable and clean energy applications. With chapters written by the leading academicians and researchers working in the field, the volume explores state-of-the-art developments using both commercially available and emerging materials and their potential applications for energy storage and energy harvesting.

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems
Author: A. Pandikumar
Publisher: Elsevier
Total Pages: 542
Release: 2020-05-13
Genre: Technology & Engineering
ISBN: 0128195525

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems gathers and reviews developments within the field of nanostructured functional materials towards energy conversion and storage. Contributions from leading research groups involved in interdisciplinary research in the fields of chemistry, physics and materials science and engineering are presented. Chapters dealing with the development of nanostructured materials for energy conversion processes, including oxygen reduction, methanol oxidation, oxygen evolution, hydrogen evolution, formic acid oxidation and solar cells are discussed. The work concludes with a look at the application of nanostructured functional materials in energy storage system, such as supercapacitors and batteries. With its distinguished international team of expert contributors, this book will be an indispensable tool for anyone involved in the field of energy conversion and storage, including materials engineers, scientists and academics.

Nanostructured Materials for Next-Generation Energy Storage and Conversion

Nanostructured Materials for Next-Generation Energy Storage and Conversion
Author: Ying-Pin Chen
Publisher: Springer
Total Pages: 363
Release: 2017-05-31
Genre: Technology & Engineering
ISBN: 3662535149

Volume 1 of a 4-volume series is a concise, authoritative and an eminently readable and enjoyable experience related to hydrogen production, storage and usage for portable and stationary power. Although the major focus is on hydrogen, discussion of fossil fuels and nuclear power is also presented where appropriate. This monograph is written by recognized experts in the field, and is both timely and appropriate as this decade will see application of hydrogen as an energy carrier, for example in transportation sector. The world's reliance on fossil fuels is due to the ever growing need for energy to sustain life and on-going progress; however exploitation also brings consequences such as emission of carbon, nitrogen and sulfur dioxides into the atmosphere. The collective influence of these photochemical gases is production of acid rain and an alternation of global temperatures, leading to record high temperatures in many parts of the world. The fossil fuel is unsustainable and thus there is a critical need for alternative sustainable energy resources. One universal energy carrier is hydrogen, which is the focus of this volume. This book is suitable for those who work in the energy field as technical experts, including engineers and scientists, as well as managers, policy and decision-makers, environmentalists and consultants. Students and practitioners such as lectures, teachers, legislators and their aids in the field of energy will find this book invaluable and a practical handbook or guide in the field of sustainable energy with emphasis on hydrogen as an energy carrier.

Carbon Based Nanomaterials for Advanced Thermal and Electrochemical Energy Storage and Conversion

Carbon Based Nanomaterials for Advanced Thermal and Electrochemical Energy Storage and Conversion
Author: Rajib Paul
Publisher: Elsevier
Total Pages: 464
Release: 2019-07-20
Genre: Science
ISBN: 0128140844

Carbon Based Nanomaterials for Advanced Thermal and Electrochemical Energy Storage and Conversion presents a comprehensive overview of recent theoretical and experimental developments and prospects on carbon-based nanomaterials for thermal, solar and electrochemical energy conversion, along with their storage applications for both laboratory and industrial perspectives. Large growth in human populations has led to seminal growth in global energy consumption, hence fossil fuel usage has increased, as have unwanted greenhouse gases, including carbon dioxide, which results in critical environmental concerns. This book discusses this growing problem, aligning carbon nanomaterials as a solution because of their structural diversity and electronic, thermal and mechanical properties. - Provides an overview on state-of-the-art carbon nanomaterials and key requirements for applications of carbon materials towards efficient energy storage and conversion - Presents an updated and comprehensive review of recent work and the theoretical aspects on electrochemistry - Includes discussions on the industrial production of carbon-based materials for energy applications, along with insights from industrial experts

Properties of Amorphous Carbon

Properties of Amorphous Carbon
Author: S. R. P. Silva
Publisher: IET
Total Pages: 396
Release: 2003
Genre: Science
ISBN: 9780852969618

World experts in amorphous carbon have been drawn together to produce this comprehensive commentary on the current state and future prospects of amorphous carbon, a highly functional material. Amorphous carbon has a wide range of properties that are primarily controlled by the different bond hybridisations possible in such materials. This allows for the growth of an extensive range of thin films that can be tailored for specific applications. Films can range from those with high transparency and which are hard and diamond-like, through to those which are opaque, soft and graphitic-like. Application areas including field emission cathodes, MEMs, electronic devices, medical and optical coatings are now close to market.

Nanomaterials For Energy Conversion And Storage

Nanomaterials For Energy Conversion And Storage
Author: Dunwei Wang
Publisher: World Scientific
Total Pages: 836
Release: 2017-11-10
Genre: Science
ISBN: 1786343649

The use of nanomaterials in energy conversion and storage represents an opportunity to improve the performance, density and ease of transportation in renewable resources. This book looks at the most recent research on the topic, with particular focus on artificial photosynthesis and lithium-ion batteries as the most promising technologies to date. Research on the broad subject of energy conversion and storage calls for expertise from a wide range of backgrounds, from the most fundamental perspectives of the key catalytic processes at the molecular level to device scale engineering and optimization. Although the nature of the processes dictates that electrochemistry is a primary characterization tool, due attention is given to advanced techniques such as synchrotron studies in operando. These studies look at the gap between the performance of current technology and what is needed for the future, for example how to improve on the lithium-ion battery and to go beyond its capabilities.Suitable for students and practitioners in the chemical, electrochemical, and environmental sciences, Nanomaterials for Energy Conversion and Storage provides the information needed to find scalable, economically viable and safe solutions for sustainable energy.

Emerging Materials for Energy Conversion and Storage

Emerging Materials for Energy Conversion and Storage
Author: Kuan Yew Cheong
Publisher: Elsevier
Total Pages: 490
Release: 2018-08-09
Genre: Technology & Engineering
ISBN: 0128137959

Emerging Materials for Energy Conversion and Storage presents the state-of-art of emerging materials for energy conversion technologies (solar cells and fuel cells) and energy storage technologies (batteries, supercapacitors and hydrogen storage). The book is organized into five primary sections, each with three chapters authored by worldwide experts in the fields of materials science, physics, chemistry and engineering. It covers the fundamentals, functionalities, challenges and prospects of different classes of emerging materials, such as wide bandgap semiconductors, oxides, carbon-based nanostructures, advanced ceramics, chalcogenide nanostructures, and flexible organic electronics nanomaterials. The book is an important reference for students and researchers (from academics, but also industry) interested in understanding the properties of emerging materials. - Explores the fundamentals, challenges and prospects for the application of emerging materials in the development of energy conversion and storage devices - Presents a discussion of solar cell and photovoltaic, fuel cell, battery electrode, supercapacitor and hydrogen storage applications - Includes notable examples of energy devices based on emerging materials to illustrate recent advances in this field

Syntheses and Applications of Carbon Nanotubes and Their Composites

Syntheses and Applications of Carbon Nanotubes and Their Composites
Author: Satoru Suzuki
Publisher: BoD – Books on Demand
Total Pages: 552
Release: 2013-05-09
Genre: Science
ISBN: 9535111256

Carbon nanotubes are rolled up graphene sheets with a quasi-one-dimensional structure of nanometer-scale diameter. In these last twenty years, carbon nanotubes have attracted much attention from physicists, chemists, material scientists, and electronic device engineers, because of their excellent structural, electronic, optical, chemical and mechanical properties. More recently, demand for innovative industrial applications of carbon nanotubes is increasing. This book covers recent research topics regarding syntheses techniques of carbon nanotubes and nanotube-based composites, and their applications. The chapters in this book will be helpful to many students, engineers and researchers working in the field of carbon nanotubes.

Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications

Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications
Author: Srabanti Ghosh
Publisher: John Wiley & Sons
Total Pages: 38
Release: 2021-06-01
Genre: Technology & Engineering
ISBN: 3527345574

A timely overview of fundamental and advanced topics of conjugated polymer nanostructures Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications is a comprehensive reference on conjugated polymers for energy applications. Distinguished academic and editor Srabanti Ghosh offers readers a broad overview of the synthesis, characterization, and energy-related applications of nanostructures based on conjugated polymers. The book includes novel approaches and presents an interdisciplinary perspective rooted in the interfacing of polymer and synthetic chemistry, materials science, organic chemistry, and analytical chemistry. This book provides complete descriptions of conjugated polymer nanostructures and polymer-based hybrid materials for energy conversion, water splitting, and the degradation of organic pollutants. Photovoltaics, solar cells, and energy storage devices such as supercapacitors, lithium ion battery electrodes, and their associated technologies are discussed, as well. Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications covers both the fundamental topics and the most recent advances in this rapidly developing area, including: The design and characterization of conjugated polymer nanostructures, including the template-free and chemical synthesis of polymer nanostructures Conjugated polymer nanostructures for solar energy conversion and environmental protection, including the use of conjugated polymer-based nanocomposites as photocatalysts Conjugated polymer nanostructures for energy storage, including the use of nanocomposites as electrode materials The presentation of different and novel methods of utilizing conjugated polymer nanostructures for energy applications Perfect for materials scientists, polymer chemists, and physical chemists, Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications also belongs on the bookshelves of organic chemists and any other practicing researchers, academics, or professionals whose work touches on these highly versatile and useful structures.

Nanotechnology for Energy and Environmental Engineering

Nanotechnology for Energy and Environmental Engineering
Author: Lalita Ledwani
Publisher: Springer Nature
Total Pages: 605
Release: 2020-03-12
Genre: Technology & Engineering
ISBN: 303033774X

This book examines the potential applications of nanoscience and nanotechnology to promote eco-friendly processes and techniques for energy and environment sustainability. Covering various aspects of both the synthesis and applications of nanoparticles and nanofluids for energy and environmental engineering, its goal is to promote eco-friendly processes and techniques. Accordingly, the book elaborates on the development of reliable, economical, eco-friendly processes through advanced nanoscience and technological research and innovations. Gathering contributions by researchers actively engaged in various domains of nanoscience and technology, it addresses topics such as nanoparticle synthesis (both top-down and bottom-up approaches); applications of nanomaterials, nanosensors and plasma discharge in pollution control; environmental monitoring; agriculture; energy recovery; production enhancement; energy conservation and storage; surface modification of materials for energy storage; fuel cells; pollution mitigation; and CO2 capture and sequestration. Given its scope, the book will be of interest to academics and researchers whose work involves nanotechnology or nanomaterials, especially as applied to energy and/or environmental sustainability engineering. Graduate students in the same areas will also find it a valuable resource.