Nanofluid Technologies And Thermal Convection Techniques
Download Nanofluid Technologies And Thermal Convection Techniques full books in PDF, epub, and Kindle. Read online free Nanofluid Technologies And Thermal Convection Techniques ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Chand, Ramesh |
Publisher | : IGI Global |
Total Pages | : 319 |
Release | : 2017-01-10 |
Genre | : Technology & Engineering |
ISBN | : 1683180070 |
Emerging developments in nanofluid research have enhanced its range of various industrial applications. When implemented effectively, the use of such fluids offer numerous benefits, particularly in cooling processes. Nanofluid Technologies and Thermal Convection Techniques is a pivotal source of information for theoretical perspectives and investigations on the thermal instability of nanofluids and its various effects. Highlighting relevant studies relating to stationary, double diffusive, and oscillatory convection, this book is ideally designed for professionals, researchers, and practitioners seeking material on the industrial usage of nanofluid technologies.
Author | : Hafiz Muhammad Ali |
Publisher | : Academic Press |
Total Pages | : 304 |
Release | : 2020-05-15 |
Genre | : Technology & Engineering |
ISBN | : 012819281X |
Hybrid Nanofluids for Convection Heat Transfer discusses how to maximize heat transfer rates with the addition of nanoparticles into conventional heat transfer fluids. The book addresses definitions, preparation techniques, thermophysical properties and heat transfer characteristics with mathematical models, performance-affecting factors, and core applications with implementation challenges of hybrid nanofluids. The work adopts mathematical models and schematic diagrams in review of available experimental methods. It enables readers to create new techniques, resolve existing research problems, and ultimately to implement hybrid nanofluids in convection heat transfer applications. - Provides key heat transfer performance and thermophysical characteristics of hybrid nanofluids - Reviews parameter selection and property measurement techniques for thermal performance calibration - Explores the use of predictive mathematical techniques for experimental properties
Author | : Sarit K. Das |
Publisher | : John Wiley & Sons |
Total Pages | : 485 |
Release | : 2007-12-04 |
Genre | : Technology & Engineering |
ISBN | : 0470180684 |
Introduction to nanofluids--their properties, synthesis, characterization, and applications Nanofluids are attracting a great deal of interest with their enormous potential to provide enhanced performance properties, particularly with respect to heat transfer. In response, this text takes you on a complete journey into the science and technology of nanofluids. The authors cover both the chemical and physical methods for synthesizing nanofluids, explaining the techniques for creating a stable suspension of nanoparticles. You get an overview of the existing models and experimental techniques used in studying nanofluids, alongside discussions of the challenges and problems associated with some of these models. Next, the authors set forth and explain the heat transfer applications of nanofluids, including microelectronics, fuel cells, and hybrid-powered engines. You also get an introduction to possible future applications in large-scale cooling and biomedicine. This book is the work of leading pioneers in the field, one of whom holds the first U.S. patent for nanofluids. They have combined their own first-hand knowledge with a thorough review of theliterature. Among the key topics are: * Synthesis of nanofluids, including dispersion techniques and characterization methods * Thermal conductivity and thermo-physical properties * Theoretical models and experimental techniques * Heat transfer applications in microelectronics, fuel cells, and vehicle engines This text is written for researchers in any branch of science and technology, without any prerequisite.It therefore includes some basic information describing conduction, convection, and boiling of nanofluids for those readers who may not have adequate background in these areas. Regardless of your background, you'll learn to develop nanofluids not only as coolants, but also for a host ofnew applications on the horizon.
Author | : Vincenzo Bianco |
Publisher | : CRC Press |
Total Pages | : 473 |
Release | : 2015-04-01 |
Genre | : Science |
ISBN | : 1482254026 |
Nanofluids are gaining the attention of scientists and researchers around the world. This new category of heat transfer medium improves the thermal conductivity of fluid by suspending small solid particles within it and offers the possibility of increased heat transfer in a variety of applications. Bringing together expert contributions from
Author | : Pulickel M. Ajayan |
Publisher | : John Wiley & Sons |
Total Pages | : 239 |
Release | : 2006-03-06 |
Genre | : Technology & Engineering |
ISBN | : 3527605177 |
In recent years, nanocomposites have captured and held the attention and imagination of scientists and engineers alike. Based on the simple premise that by using a wide range of building blocks with dimensions in the nanosize region, it is possible to design and create new materials with unprecedented flexibility and improvements in their physical properties. This book contains the essence of this emerging technology, the underlying science and motivation behind the design of these structures and the future, particularly from the perspective of applications. It is intended to be a reference handbook for future scientists and hence carries the basic science and the fundamental engineering principles that lead to the fabrication and property evaluation of nanocomposite materials in different areas of materials science and technology.
Author | : Mohsen Sheikholeslami |
Publisher | : Elsevier |
Total Pages | : 882 |
Release | : 2018-01-02 |
Genre | : Science |
ISBN | : 0128136766 |
Application of Semi-Analytical Methods for Nanofluid Flow and Heat Transfer applies semi-analytical methods to solve a range of engineering problems. After various methods are introduced, their application in nanofluid flow and heat transfer, magnetohydrodynamic flow, electrohydrodynamic flow and heat transfer, and nanofluid flow in porous media within several examples are explored. This is a valuable reference resource for materials scientists and engineers that will help familiarize them with a wide range of semi-analytical methods and how they are used in nanofluid flow and heat transfer. The book also includes case studies to illustrate how these methods are used in practice. - Presents detailed information, giving readers a complete familiarity with governing equations where nanofluid is used as working fluid - Provides the fundamentals of new analytical methods, applying them to applications of nanofluid flow and heat transfer in the presence of magnetic and electric field - Gives a detailed overview of nanofluid motion in porous media
Author | : R. O. Fagbenle |
Publisher | : Woodhead Publishing |
Total Pages | : 530 |
Release | : 2020-01-27 |
Genre | : Technology & Engineering |
ISBN | : 012817949X |
Applications of Heat, Mass and Fluid Boundary Layers brings together the latest research on boundary layers where there has been remarkable advancements in recent years. This book highlights relevant concepts and solutions to energy issues and environmental sustainability by combining fundamental theory on boundary layers with real-world industrial applications from, among others, the thermal, nuclear and chemical industries. The book's editors and their team of expert contributors discuss many core themes, including advanced heat transfer fluids and boundary layer analysis, physics of fluid motion and viscous flow, thermodynamics and transport phenomena, alongside key methods of analysis such as the Merk-Chao-Fagbenle method. This book's multidisciplinary coverage will give engineers, scientists, researchers and graduate students in the areas of heat, mass, fluid flow and transfer a thorough understanding of the technicalities, methods and applications of boundary layers, with a unified approach to energy, climate change and a sustainable future.
Author | : Li, Changhe |
Publisher | : IGI Global |
Total Pages | : 441 |
Release | : 2019-10-25 |
Genre | : Technology & Engineering |
ISBN | : 179981548X |
In today’s modern world, the manufacturing industry is embracing an energy-efficient initiative and adopting green techniques. One aspect that has failed to adopt this scheme is flood grinding. Current flood grinding methods increase the treatment cost of grinding fluid and waste large quantities. In order to remain sustainable and efficient, in-depth research is necessary to study green grinding technologies that can ensure machining precision and surface quality of workpiece and reduce grinding fluid-induced environmental pollution. Enhanced Heat Transfer Mechanism of Nanofluid MQL Cooling Grinding provides emerging research exploring the theoretical and practical aspects of nanofluid lubrication and its application within grinding flow and green manufacturing. Featuring coverage on a broad range of topics such as airflow distribution, morphology analysis, and lubrication performance, this book is ideally designed for mechanical professionals, engineers, manufacturers, researchers, scientists, academicians, and students seeking current research on clean and low-carbon precision machining methods.
Author | : Shriram S. Sonawane |
Publisher | : Elsevier |
Total Pages | : 381 |
Release | : 2023-06-28 |
Genre | : Technology & Engineering |
ISBN | : 0443152403 |
Nanofluid Applications for Advanced Thermal Solutions covers heat transfer applications of nanofluids in a variety of fields and the main techniques used in nanofluid flow and heat transfer analysis. The book features an introduction to heat transfer, nanofluid conduction, convection and nanofluid boiling and provides a thorough understanding of a variety of applications, including the energy storage component of solar PVT systems. It covers fundamental topics such as the analysis and measurement of thermophysical properties, convection, and heat transfer equipment performance, and provides a rigorous framework to assist readers in developing new nanofluid-based devices. Finally, the book explores convective instabilities, nanofluids in porous media, and entropy generation in nanofluids. This will be a valuable resource for upper undergraduate, postgraduate, and doctoral students and researchers in the fields of nanotechnology and nanofluids looking at heat transfer processes in chemical engineering and the petroleum industry. - Provides a comprehensive overview of the heat transfer application of nanofluids in a variety of fields - Features numerical and experimental investigations of hybrid and mono nanoparticles based nanofluids - Explores comparative performance investigations of various nanofluids for absorption/regeneration and metal extraction/stripping operations - Provides case examples of operation and scale-up challenges for nanofluid applications in the industrial process
Author | : Zhixiong Li |
Publisher | : Elsevier |
Total Pages | : 368 |
Release | : 2020-04-09 |
Genre | : Technology & Engineering |
ISBN | : 0128219246 |
Nanofluid in Heat Exchanges for Mechanical Systems: Numerical Simulation shows how the finite volume method is used to simulate various applications of heat exchanges. Heat transfer enhancement methods are introduced in detail, along with a hydrothermal analysis and second law approaches for heat exchanges. The melting process in heat exchanges is also covered, as is the influence of variable magnetic fields on the performance of heat exchange. This is an important reference source for materials scientists and mechanical engineers who are looking to understand the main ways that nanofluid flow is simulated and applied in industry. - Provides detailed coverage of major models used in nanofluid analysis, including the finite volume method, governing equations for turbulent flow, and equations of nanofluid in presence of variable magnetic field - Offers detailed coverage of swirling flow devices and melting processes - Assesses which models should be applied in which situations