Nano Semiconducting Materials

Nano Semiconducting Materials
Author: R. Saravanan
Publisher: Materials Research Forum LLC
Total Pages: 183
Release: 2016-06-01
Genre: Technology & Engineering
ISBN: 1945291052

Due to their unique optical, thermal, catalytic, magnetic and electronic properties, nano-sized semiconductors have a huge potential in a great number of technological applications, ranging from photovoltaics and photocatalysis to biosensors and medicine. In the last couple of decades, the synthesis and characterization of these materials has been of key interest not only to materials scientists but also to researchers working in the field of physics, chemistry, molecular biology and medicine. The main focus of the present book is the characterization of a number of nano-semiconducting materials, using such techniques as powder X-ray diffraction, UV-visible spectrophotometry, Raman spectrometry, scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometry. The materials studied include ZnS, TiO2, NiO, Ga doped ZnO, Mn doped SnO2, Mn doped CeO2 and Mn doped ZrO2. Of special interest has been the analysis of the electron density distribution within the nano samples. The results give deep insights into the atomic structures on which these crystals are based and on the binding characteristics between the atoms and the ways in which these characteristics can be changed. As the decisive properties of these materials depend upon the electron density distributions and their variations due to sample preparation specifics, temperature and the presence of doping elements, these results give important hints on the direction in which further research should be directed.

Nano-Semiconductors

Nano-Semiconductors
Author: Krzysztof Iniewski
Publisher: CRC Press
Total Pages: 600
Release: 2018-09-03
Genre: Technology & Engineering
ISBN: 143984836X

With contributions from top international experts from both industry and academia, Nano-Semiconductors: Devices and Technology is a must-read for anyone with a serious interest in future nanofabrication technologies. Taking into account the semiconductor industry’s transition from standard CMOS silicon to novel device structures—including carbon nanotubes (CNT), graphene, quantum dots, and III-V materials—this book addresses the state of the art in nano devices for electronics. It provides an all-encompassing, one-stop resource on the materials and device structures involved in the evolution from micro- to nanoelectronics. The book is divided into three parts that address: Semiconductor materials (i.e., carbon nanotubes, memristors, and spin organic devices) Silicon devices and technology (i.e., BiCMOS, SOI, various 3D integration and RAM technologies, and solar cells) Compound semiconductor devices and technology This reference explores the groundbreaking opportunities in emerging materials that will take system performance beyond the capabilities of traditional CMOS-based microelectronics. Contributors cover topics ranging from electrical propagation on CNT to GaN HEMTs technology and applications. Approaching the trillion-dollar nanotech industry from the perspective of real market needs and the repercussions of technological barriers, this resource provides vital information about elemental device architecture alternatives that will lead to massive strides in future development.

Semiconductor Nanomaterials

Semiconductor Nanomaterials
Author: Challa S. S. R. Kumar
Publisher: John Wiley & Sons
Total Pages: 499
Release: 2010-04-05
Genre: Technology & Engineering
ISBN: 3527321667

The book series Nanomaterials for the Life Sciences, provides an in-depth overview of all nanomaterial types and their uses in the life sciences. Each volume is dedicated to a specific material class and covers fundamentals, synthesis and characterization strategies, structure-property relationships and biomedical applications. The series brings nanomaterials to the Life Scientists and life science to the Materials Scientists so that synergies are seen and developed to the fullest. Written by international experts of various facets of this exciting field of research, the series is aimed at scientists of the following disciplines: biology, chemistry, materials science, physics, bioengineering, and medicine, together with cell biology, biomedical engineering, pharmaceutical chemistry, and toxicology, both in academia and fundamental research as well as in pharmaceutical companies. VOLUME 6 - Semiconductor Nanomaterials

Semiconductor-On-Insulator Materials for Nanoelectronics Applications

Semiconductor-On-Insulator Materials for Nanoelectronics Applications
Author: Alexei Nazarov
Publisher: Springer Science & Business Media
Total Pages: 437
Release: 2011-03-03
Genre: Technology & Engineering
ISBN: 3642158684

"Semiconductor-On-Insulator Materials for NanoElectronics Applications” is devoted to the fast evolving field of modern nanoelectronics, and more particularly to the physics and technology of nanoelectronic devices built on semiconductor-on-insulator (SemOI) systems. The book contains the achievements in this field from leading companies and universities in Europe, USA, Brazil and Russia. It is articulated around four main topics: 1. New semiconductor-on-insulator materials; 2. Physics of modern SemOI devices; 3. Advanced characterization of SemOI devices; 4. Sensors and MEMS on SOI. "Semiconductor-On-Insulator Materials for NanoElectonics Applications” is useful not only to specialists in nano- and microelectronics but also to students and to the wider audience of readers who are interested in new directions in modern electronics and optoelectronics.

Semiconductor Nanomaterials for Flexible Technologies

Semiconductor Nanomaterials for Flexible Technologies
Author: Yugang Sun
Publisher: William Andrew
Total Pages: 320
Release: 2010-05-20
Genre: Technology & Engineering
ISBN: 1437778240

This book is an overview of the strategies to generate high-quality films of one-dimensional semiconductor nanostructures on flexible substrates (e.g., plastics) and the use of them as building blocks to fabricating flexible devices (including electronics, optoelectronics, sensors, power systems). In addition to engineering aspects, the physics and chemistry behind the fabrication and device operation will also be discussed as well. Internationally recognized scientists from academia, national laboratories, and industries, who are the leading researchers in the emerging areas, are contributing exceptional chapters according to their cutting-edge research results and expertise. This book will be an on-time addition to the literature in nanoscience and engineering. It will be suitable for graduate students and researchers as a useful reference to stimulate their research interest as well as facilitate their research in nanoscience and engineering. - Considers the physics and chemistry behind fabrication and device operation - Discusses applications to electronics, optoelectronics, sensors and power systems - Examines existing technologies and investigates emerging trends

Semiconductor Nanostructures for Optoelectronic Devices

Semiconductor Nanostructures for Optoelectronic Devices
Author: Gyu-Chul Yi
Publisher: Springer Science & Business Media
Total Pages: 347
Release: 2012-01-13
Genre: Technology & Engineering
ISBN: 3642224806

This book presents the fabrication of optoelectronic nanodevices. The structures considered are nanowires, nanorods, hybrid semiconductor nanostructures, wide bandgap nanostructures for visible light emitters and graphene. The device applications of these structures are broadly explained. The book deals also with the characterization of semiconductor nanostructures. It appeals to researchers and graduate students.

Handbook of Instrumentation and Techniques for Semiconductor Nanostructure Characterization

Handbook of Instrumentation and Techniques for Semiconductor Nanostructure Characterization
Author: Richard Haight
Publisher: World Scientific
Total Pages: 346
Release: 2012
Genre: Science
ISBN: 9814322849

As we delve more deeply into the physics and chemistry of functional materials and processes, we are inexorably driven to the nanoscale. And nowhere is the development of instrumentation and associated techniques more important to scientific progress than in the area of nanoscience. The dramatic expansion of efforts to peer into nanoscale materials and processes has made it critical to capture and summarize the cutting-edge instrumentation and techniques that have become indispensable for scientific investigation in this arena. This Handbook is a key resource developed for scientists, engineers and advanced graduate students in which eminent scientists present the forefront of instrumentation and techniques for the study of structural, optical and electronic properties of semiconductor nanostructures.

Optical Properties of Semiconductor Nanocrystals

Optical Properties of Semiconductor Nanocrystals
Author: S. V. Gaponenko
Publisher: Cambridge University Press
Total Pages: 263
Release: 1998-10-28
Genre: Science
ISBN: 0521582415

Examines the optical properties of low-dimensional semiconductor structures, a hot research area - for graduate students and researchers.

Semiconductor Nanotechnology

Semiconductor Nanotechnology
Author: Stephen M. Goodnick
Publisher: Springer
Total Pages: 241
Release: 2018-07-26
Genre: Technology & Engineering
ISBN: 3319918966

This book presents research dedicated to solving scientific and technological problems in many areas of electronics, photonics and renewable energy. Energy and information are interconnected and are essential elements for the development of human society. Transmission, processing and storage of information requires energy consumption, while the efficient use and access to new energy sources requires new information (ideas and expertise) and the design of novel systems such as photovoltaic devices, fuel cells and batteries. Semiconductor physics creates the knowledge base for the development of information (computers, cell phones, etc.) and energy (photovoltaic) technologies. The exchange of ideas and expertise between these two technologies is critical and expands beyond semiconductors. Continued progress in information and renewable energy technologies requires miniaturization of devices and reduction of costs, energy and material consumption. The latest generation of electronic devices is now approaching nanometer scale dimensions, new materials are being introduced into electronics manufacturing at an unprecedented rate, and alternative technologies to mainstream CMOS are evolving. Nanotechnology is widely accepted as a source of potential solutions in securing future progress for information and energy technologies. Semiconductor Nanotechnology features chapters that cover the following areas: atomic scale materials design, bio- and molecular electronics, high frequency electronics, fabrication of nanodevices, magnetic materials and spintronics, materials and processes for integrated and subwave optoelectronics, nanoCMOS, new materials for FETs and other devices, nanoelectronics system architecture, nano optics and lasers, non-silicon materials and devices, chemical and biosensors, quantum effects in devices, nano science and technology applications in the development of novel solar energy devices, and fuel cells and batteries.

III-nitride Devices and Nanoengineering

III-nitride Devices and Nanoengineering
Author: Zhe Chuan Feng
Publisher: World Scientific
Total Pages: 477
Release: 2008
Genre: Technology & Engineering
ISBN: 1848162235

Devices, nanoscale science and technologies based on GaN and related materials, have achieved great developments in recent years. New GaN-based devices such as UV detectors, fast p-HEMT and microwave devices are developed far more superior than other semiconductor materials-based devices.Written by renowned experts, the review chapters in this book cover the most important topics and achievements in recent years, discuss progress made by different groups, and suggest future directions. Each chapter also describes the basis of theory and experiment.This book is an invaluable resource for device design and processing engineers, material growers and evaluators, postgraduates and scientists as well as newcomers in the GaN field.