MY FIRST A.I. BOOK - Artificial Intelligence and Learning

MY FIRST A.I. BOOK - Artificial Intelligence and Learning
Author: Nicky Roberts
Publisher: My First A.I. Book
Total Pages: 34
Release: 2019-08-30
Genre: Juvenile Fiction
ISBN: 9781513654249

Artificial Intelligence and Learning is a teaser in a series of books and pioneering book for kids on Artificial Intelligence (A.I.) which focuses on its chief concept: LEARNING. The My First A.I. Books Series introduces kids of all ages to the foundational concepts for Artificial Intelligence and the 4th Industrial/Human Revolution, AKA I4.0 or 4IR or IOT. Written by three global experts and active scientific researchers, Professors Fernando Buarque (Ph.D. in A.I. Imperial College London), Tshilidzi Marwala (Ph.D. in A.I. at University of Cambridge), and Nicky Roberts (Ph.D. in Mathematics Education at the University of Witwatersrand).This book and series are suitable for all kids starting their Artificial Intelligence journey. As a matter of fact, the future of humankind depends centrally on how A.I. will be produced and used. As such, little readers are encouraged to think and talk in an informed manner about A.I. topics. The story of this first book, sets the plot by delving into the evolution of human tools (up to the fourth human revolution), types of learning, the ingredients for adaptive computer programs (i.e. programs that are able to learn), and even provides a working definition of A.I. All the books of the series are packed with concepts and encourage inquiry. They aim to widen the kids' perspectives on, and also nurture their participation with, these new concepts and tools. All that in this amazing unfolding revolution - the Revolution of the Intelligence. The authors took care to include not only technical concepts, but humanistic and character-building values too. Thus, readers would acquire a good foundation for their future, which may even not be a technical one (but certainly will include A.I.). Ideally, this book should be read by the kids with an adult. It is handsomely complemented by five more books, which portrait five missions, detailing other chief functional A.I. concepts. In each mission the explorers are challenged to delve (and learn) five different ways of using A.I. on real-world problems. The other books in the My First A.I. Books Series are: -My First A.I. Book - Mission of Team-B is Searching -My First A.I. Book - Mission of Team-R is Predicting-My First A.I. Book - Mission of Team-I is Classifying-My First A.I. Book - Mission of Team-C is Optimizing-My First A.I. Book - Mission of Team-S is Interfacing

The Essence of Artificial Intelligence

The Essence of Artificial Intelligence
Author: Alison Cawsey
Publisher: Pearson
Total Pages: 204
Release: 1998
Genre: Computers
ISBN: 9780135717790

A concise, practical introduction to artificial intelligence, this title starts with the fundamentals of knowledge representation, inference, expert systems, natural language processing, machine learning, neural networks, agents, robots, and much more. Examples and algorithms are presented throughout, and the book includes a complete glossary.

The AI-First Company

The AI-First Company
Author: Ash Fontana
Publisher: Penguin
Total Pages: 306
Release: 2021-05-04
Genre: Business & Economics
ISBN: 0593330315

Artificial Intelligence is transforming every industry, but if you want to win with AI, you have to put it first on your priority list. AI-First companies are the only trillion-dollar companies, and soon they will dominate even more industries, more definitively than ever before. These companies succeed by design--they collect valuable data from day one and use it to train predictive models that automate core functions. As a result, they learn faster and outpace the competition in the process. Thankfully, you don't need a Ph.D. to learn how to win with AI. In The AI-First Company, internationally-renowned startup investor Ash Fontana offers an executable guide for applying AI to business problems. It's a playbook made for real companies, with real budgets, that need strategies and tactics to effectively implement AI. Whether you're a new online retailer or a Fortune 500 company, Fontana will teach you how to: • Identify the most valuable data; • Build the teams that build AI; • Integrate AI with existing processes and keep it in check; • Measure and communicate its effectiveness; • Reinvest the profits from automation to compound competitive advantage. If the last fifty years were about getting AI to work in the lab, the next fifty years will be about getting AI to work for people, businesses, and society. It's not about building the right software -- it's about building the right AI. The AI-First Company is your guide to winning with artificial intelligence.

AI and Machine Learning for Coders

AI and Machine Learning for Coders
Author: Laurence Moroney
Publisher: O'Reilly Media
Total Pages: 393
Release: 2020-10-01
Genre: Computers
ISBN: 1492078166

If you're looking to make a career move from programmer to AI specialist, this is the ideal place to start. Based on Laurence Moroney's extremely successful AI courses, this introductory book provides a hands-on, code-first approach to help you build confidence while you learn key topics. You'll understand how to implement the most common scenarios in machine learning, such as computer vision, natural language processing (NLP), and sequence modeling for web, mobile, cloud, and embedded runtimes. Most books on machine learning begin with a daunting amount of advanced math. This guide is built on practical lessons that let you work directly with the code. You'll learn: How to build models with TensorFlow using skills that employers desire The basics of machine learning by working with code samples How to implement computer vision, including feature detection in images How to use NLP to tokenize and sequence words and sentences Methods for embedding models in Android and iOS How to serve models over the web and in the cloud with TensorFlow Serving

Machine Learning

Machine Learning
Author: Ethem Alpaydin
Publisher: MIT Press
Total Pages: 225
Release: 2016-10-07
Genre: Computers
ISBN: 0262529513

A concise overview of machine learning—computer programs that learn from data—which underlies applications that include recommendation systems, face recognition, and driverless cars. Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition—as well as some we don't yet use everyday, including driverless cars. It is the basis of the new approach in computing where we do not write programs but collect data; the idea is to learn the algorithms for the tasks automatically from data. As computing devices grow more ubiquitous, a larger part of our lives and work is recorded digitally, and as “Big Data” has gotten bigger, the theory of machine learning—the foundation of efforts to process that data into knowledge—has also advanced. In this book, machine learning expert Ethem Alpaydin offers a concise overview of the subject for the general reader, describing its evolution, explaining important learning algorithms, and presenting example applications. Alpaydin offers an account of how digital technology advanced from number-crunching mainframes to mobile devices, putting today's machine learning boom in context. He describes the basics of machine learning and some applications; the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances, with such applications as customer segmentation and learning recommendations; and reinforcement learning, when an autonomous agent learns act so as to maximize reward and minimize penalty. Alpaydin then considers some future directions for machine learning and the new field of “data science,” and discusses the ethical and legal implications for data privacy and security.

Artificial Intelligence

Artificial Intelligence
Author: David L. Poole
Publisher: Cambridge University Press
Total Pages: 821
Release: 2017-09-25
Genre: Computers
ISBN: 110719539X

Artificial Intelligence presents a practical guide to AI, including agents, machine learning and problem-solving simple and complex domains.

The AI-Powered Enterprise

The AI-Powered Enterprise
Author: Seth Earley
Publisher: Lifetree Media
Total Pages: 320
Release: 2020-04-28
Genre: Business & Economics
ISBN: 9781928055501

Learn how to develop and employ an ontology, the secret weapon for successfully using artificial intelligence to create a powerful competitive advantage in your business. The AI-Powered Enterprise examines two fundamental questions: First, how will the future be different as a result of artificial intelligence? And second, what must companies do to stake their claim on that future? When the Web came along in the mid-90s, it transformed the behavior of customers and remade whole industries. Now, as part of its promise to bring revolutionary change in untold ways to human activity, artificial intelligence--AI--is about to create another complete transformation in how companies create and deliver value to customers. But despite the billions spent so far on bots and other tools, AI continues to stumble. Why can't it magically use all the data organizations generate to make them run faster and better? Because something is missing. AI works only when it understands the soul of the business. An ontology is a holistic digital model of every piece of information that matters to the business, from processes to products to people, and it's what makes the difference between the promise of AI and delivering on that promise. Business leaders who want to catch the AI wave--rather than be crushed by it--need to read The AI-Powered Enterprise. The book is the first to combine a sophisticated explanation of how AI works with a practical approach to applying AI to the problems of business, from customer experience to business operations to product development.

Mathematics for Machine Learning

Mathematics for Machine Learning
Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
Total Pages: 392
Release: 2020-04-23
Genre: Computers
ISBN: 1108569323

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Hands-On Deep Learning Algorithms with Python

Hands-On Deep Learning Algorithms with Python
Author: Sudharsan Ravichandiran
Publisher: Packt Publishing Ltd
Total Pages: 498
Release: 2019-07-25
Genre: Computers
ISBN: 1789344514

Understand basic to advanced deep learning algorithms, the mathematical principles behind them, and their practical applications. Key FeaturesGet up-to-speed with building your own neural networks from scratch Gain insights into the mathematical principles behind deep learning algorithmsImplement popular deep learning algorithms such as CNNs, RNNs, and more using TensorFlowBook Description Deep learning is one of the most popular domains in the AI space, allowing you to develop multi-layered models of varying complexities. This book introduces you to popular deep learning algorithms—from basic to advanced—and shows you how to implement them from scratch using TensorFlow. Throughout the book, you will gain insights into each algorithm, the mathematical principles behind it, and how to implement it in the best possible manner. The book starts by explaining how you can build your own neural networks, followed by introducing you to TensorFlow, the powerful Python-based library for machine learning and deep learning. Moving on, you will get up to speed with gradient descent variants, such as NAG, AMSGrad, AdaDelta, Adam, and Nadam. The book will then provide you with insights into RNNs and LSTM and how to generate song lyrics with RNN. Next, you will master the math for convolutional and capsule networks, widely used for image recognition tasks. Then you learn how machines understand the semantics of words and documents using CBOW, skip-gram, and PV-DM. Afterward, you will explore various GANs, including InfoGAN and LSGAN, and autoencoders, such as contractive autoencoders and VAE. By the end of this book, you will be equipped with all the skills you need to implement deep learning in your own projects. What you will learnImplement basic-to-advanced deep learning algorithmsMaster the mathematics behind deep learning algorithmsBecome familiar with gradient descent and its variants, such as AMSGrad, AdaDelta, Adam, and NadamImplement recurrent networks, such as RNN, LSTM, GRU, and seq2seq modelsUnderstand how machines interpret images using CNN and capsule networksImplement different types of generative adversarial network, such as CGAN, CycleGAN, and StackGANExplore various types of autoencoder, such as Sparse autoencoders, DAE, CAE, and VAEWho this book is for If you are a machine learning engineer, data scientist, AI developer, or simply want to focus on neural networks and deep learning, this book is for you. Those who are completely new to deep learning, but have some experience in machine learning and Python programming, will also find the book very helpful.

The Alignment Problem: Machine Learning and Human Values

The Alignment Problem: Machine Learning and Human Values
Author: Brian Christian
Publisher: W. W. Norton & Company
Total Pages: 459
Release: 2020-10-06
Genre: Science
ISBN: 039363583X

A jaw-dropping exploration of everything that goes wrong when we build AI systems and the movement to fix them. Today’s “machine-learning” systems, trained by data, are so effective that we’ve invited them to see and hear for us—and to make decisions on our behalf. But alarm bells are ringing. Recent years have seen an eruption of concern as the field of machine learning advances. When the systems we attempt to teach will not, in the end, do what we want or what we expect, ethical and potentially existential risks emerge. Researchers call this the alignment problem. Systems cull résumés until, years later, we discover that they have inherent gender biases. Algorithms decide bail and parole—and appear to assess Black and White defendants differently. We can no longer assume that our mortgage application, or even our medical tests, will be seen by human eyes. And as autonomous vehicles share our streets, we are increasingly putting our lives in their hands. The mathematical and computational models driving these changes range in complexity from something that can fit on a spreadsheet to a complex system that might credibly be called “artificial intelligence.” They are steadily replacing both human judgment and explicitly programmed software. In best-selling author Brian Christian’s riveting account, we meet the alignment problem’s “first-responders,” and learn their ambitious plan to solve it before our hands are completely off the wheel. In a masterful blend of history and on-the ground reporting, Christian traces the explosive growth in the field of machine learning and surveys its current, sprawling frontier. Readers encounter a discipline finding its legs amid exhilarating and sometimes terrifying progress. Whether they—and we—succeed or fail in solving the alignment problem will be a defining human story. The Alignment Problem offers an unflinching reckoning with humanity’s biases and blind spots, our own unstated assumptions and often contradictory goals. A dazzlingly interdisciplinary work, it takes a hard look not only at our technology but at our culture—and finds a story by turns harrowing and hopeful.