Multiscale Simulations For Electrochemical Devices
Download Multiscale Simulations For Electrochemical Devices full books in PDF, epub, and Kindle. Read online free Multiscale Simulations For Electrochemical Devices ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Ryoji Asahi |
Publisher | : CRC Press |
Total Pages | : 330 |
Release | : 2020-01-03 |
Genre | : Science |
ISBN | : 1000021416 |
Environmental protection and sustainability are major concerns in today’s world, and a reduction in CO2 emission and the implementation of clean energy are inevitable challenges for scientists and engineers today. The development of electrochemical devices, such as fuel cells, Li-ion batteries, and artificial photosynthesis, is vital for solving environmental problems. A practical device requires designing of materials and operational systems; however, a multidisciplinary subject covering microscopic physics and chemistry as well as macroscopic device properties is absent. In this situation, multiscale simulations play an important role. This book compiles and details cutting-edge research and development of atomistic, nanoscale, microscale, and macroscale computational modeling for various electrochemical devices, including hydrogen storage, Li-ion batteries, fuel cells, and artificial photocatalysis. The authors have been involved in the development of energy materials and devices for many years. In each chapter, after reviewing the calculation methods commonly used in the field, the authors focus on a specific computational approach that is applied to a realistic problem crucial for device improvement. They introduce the simulation technique not only as an analysis tool to explain experimental results but also as a design tool in the scale of interest. At the end of each chapter, a future perspective is added as a guide for the extension of research. Therefore, this book is suitable as a textbook or a reference on multiscale simulations and will appeal to anyone interested in learning practical simulations and applying them to problems in the development of frontier and futuristic electrochemical devices.
Author | : Ryoji Asahi |
Publisher | : CRC Press |
Total Pages | : 232 |
Release | : 2020-01-03 |
Genre | : Science |
ISBN | : 1000021793 |
Environmental protection and sustainability are major concerns in today’s world, and a reduction in CO2 emission and the implementation of clean energy are inevitable challenges for scientists and engineers today. The development of electrochemical devices, such as fuel cells, Li-ion batteries, and artificial photosynthesis, is vital for solving environmental problems. A practical device requires designing of materials and operational systems; however, a multidisciplinary subject covering microscopic physics and chemistry as well as macroscopic device properties is absent. In this situation, multiscale simulations play an important role. This book compiles and details cutting-edge research and development of atomistic, nanoscale, microscale, and macroscale computational modeling for various electrochemical devices, including hydrogen storage, Li-ion batteries, fuel cells, and artificial photocatalysis. The authors have been involved in the development of energy materials and devices for many years. In each chapter, after reviewing the calculation methods commonly used in the field, the authors focus on a specific computational approach that is applied to a realistic problem crucial for device improvement. They introduce the simulation technique not only as an analysis tool to explain experimental results but also as a design tool in the scale of interest. At the end of each chapter, a future perspective is added as a guide for the extension of research. Therefore, this book is suitable as a textbook or a reference on multiscale simulations and will appeal to anyone interested in learning practical simulations and applying them to problems in the development of frontier and futuristic electrochemical devices.
Author | : Alejandro A. Franco |
Publisher | : Springer |
Total Pages | : 253 |
Release | : 2015-11-12 |
Genre | : Technology & Engineering |
ISBN | : 1447156773 |
The aim of this book is to review innovative physical multiscale modeling methods which numerically simulate the structure and properties of electrochemical devices for energy storage and conversion. Written by world-class experts in the field, it revisits concepts, methodologies and approaches connecting ab initio with micro-, meso- and macro-scale modeling of components and cells. It also discusses the major scientific challenges of this field, such as that of lithium-ion batteries. This book demonstrates how fuel cells and batteries can be brought together to take advantage of well-established multi-scale physical modeling methodologies to advance research in this area. This book also highlights promising capabilities of such approaches for inexpensive virtual experimentation. In recent years, electrochemical systems such as polymer electrolyte membrane fuel cells, solid oxide fuel cells, water electrolyzers, lithium-ion batteries and supercapacitors have attracted much attention due to their potential for clean energy conversion and as storage devices. This has resulted in tremendous technological progress, such as the development of new electrolytes and new engineering designs of electrode structures. However, these technologies do not yet possess all the necessary characteristics, especially in terms of cost and durability, to compete within the most attractive markets. Physical multiscale modeling approaches bridge the gap between materials’ atomistic and structural properties and the macroscopic behavior of a device. They play a crucial role in optimizing the materials and operation in real-life conditions, thereby enabling enhanced cell performance and durability at a reduced cost. This book provides a valuable resource for researchers, engineers and students interested in physical modelling, numerical simulation, electrochemistry and theoretical chemistry.
Author | : Richard C. Alkire |
Publisher | : John Wiley & Sons |
Total Pages | : 315 |
Release | : 2013-12-16 |
Genre | : Science |
ISBN | : 3527680454 |
Catalysts speed up a chemical reaction or allow for reactions to take place that would not otherwise occur. The chemical nature of a catalyst and its structure are crucial for interactions with reaction intermediates. An electrocatalyst is used in an electrochemical reaction, for example in a fuel cell to produce electricity. In this case, reaction rates are also dependent on the electrode potential and the structure of the electrical double-layer. This work provides a valuable overview of this rapidly developing field by focusing on the aspects that drive the research of today and tomorrow. Key topics are discussed by leading experts, making this book a must-have for many scientists of the field with backgrounds in different disciplines, including chemistry, physics, biochemistry, engineering as well as surface and materials science. This book is volume XIV in the series "Advances in Electrochemical Sciences and Engineering".
Author | : Marko M. Melander |
Publisher | : John Wiley & Sons |
Total Pages | : 372 |
Release | : 2021-09-09 |
Genre | : Science |
ISBN | : 1119605636 |
Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.
Author | : Richard C. Alkire |
Publisher | : John Wiley & Sons |
Total Pages | : 360 |
Release | : 2008-11-21 |
Genre | : Science |
ISBN | : 3527625313 |
In this topical volume, the authors provide in-depth coverage of the vital relationship between electrochemistry and the morphology of thin films and surfaces. Clearly divided into four major sections, the book covers nanoscale dielectric films for electronic devices, superconformal film growth, electrocatalytic properties of transition metal macrocycles, and the use of synchrotron techniques in electrochemistry. All the chapters offer a concise introduction to the relevant topic, as well as supplying numerous references for easy access to further reading and the original literature. The result is must-have reading for electrochemists, physical and surface chemists and physicists, as well as materials scientists and engineers active in the field of spectroscopic methods in electrochemistry.
Author | : Serge Pierfederici |
Publisher | : Springer Nature |
Total Pages | : 322 |
Release | : |
Genre | : |
ISBN | : 3031556968 |
Author | : Lide M Rodriguez-Martinez |
Publisher | : William Andrew |
Total Pages | : 348 |
Release | : 2017-02-06 |
Genre | : Technology & Engineering |
ISBN | : 0323429963 |
Emerging Nanotechnologies in Rechargeable Energy Storage Systems addresses the technical state-of-the-art of nanotechnology for rechargeable energy storage systems. Materials characterization and device-modeling aspects are covered in detail, with additional sections devoted to the application of nanotechnology in batteries for electrical vehicles. In the later part of the book, safety and regulatory issues are thoroughly discussed. Users will find a valuable source of information on the latest developments in nanotechnology in rechargeable energy storage systems. This book will be of great use to researchers and graduate students in the fields of nanotechnology, electrical energy storage, and those interested in materials and electrochemical cell development. - Gives readers working in the rechargeable energy storage sector a greater awareness on how novel nanotechnology oriented methods can help them develop higher-performance batteries and supercapacitor systems - Provides focused coverage of the development, process, characterization techniques, modeling, safety and applications of nanomaterials for rechargeable energy storage systems - Presents readers with an informed choice in materials selection for rechargeable energy storage devices
Author | : Andrew D. Ball |
Publisher | : Springer Nature |
Total Pages | : 1186 |
Release | : |
Genre | : |
ISBN | : 3031494210 |
Author | : Guy B. Marin |
Publisher | : Academic Press |
Total Pages | : 249 |
Release | : 2011-06-28 |
Genre | : Computers |
ISBN | : 0123809851 |
Annotation Written by leading industry experts and scholars, this volume reviews and analyzes recent developments in the field of multiscale simulation.