Multiple Testing Procedures With Applications To Genomics
Download Multiple Testing Procedures With Applications To Genomics full books in PDF, epub, and Kindle. Read online free Multiple Testing Procedures With Applications To Genomics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Sandrine Dudoit |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2010-11-25 |
Genre | : Science |
ISBN | : 9781441923790 |
This book establishes the theoretical foundations of a general methodology for multiple hypothesis testing and discusses its software implementation in R and SAS. These are applied to a range of problems in biomedical and genomic research, including identification of differentially expressed and co-expressed genes in high-throughput gene expression experiments; tests of association between gene expression measures and biological annotation metadata; sequence analysis; and genetic mapping of complex traits using single nucleotide polymorphisms. The procedures are based on a test statistics joint null distribution and provide Type I error control in testing problems involving general data generating distributions, null hypotheses, and test statistics.
Author | : Sandrine Dudoit |
Publisher | : Springer Science & Business Media |
Total Pages | : 611 |
Release | : 2007-12-18 |
Genre | : Science |
ISBN | : 0387493174 |
This book establishes the theoretical foundations of a general methodology for multiple hypothesis testing and discusses its software implementation in R and SAS. These are applied to a range of problems in biomedical and genomic research, including identification of differentially expressed and co-expressed genes in high-throughput gene expression experiments; tests of association between gene expression measures and biological annotation metadata; sequence analysis; and genetic mapping of complex traits using single nucleotide polymorphisms. The procedures are based on a test statistics joint null distribution and provide Type I error control in testing problems involving general data generating distributions, null hypotheses, and test statistics.
Author | : Peter H. Westfall |
Publisher | : John Wiley & Sons |
Total Pages | : 382 |
Release | : 1993-01-12 |
Genre | : Mathematics |
ISBN | : 9780471557616 |
Combines recent developments in resampling technology (including the bootstrap) with new methods for multiple testing that are easy to use, convenient to report and widely applicable. Software from SAS Institute is available to execute many of the methods and programming is straightforward for other applications. Explains how to summarize results using adjusted p-values which do not necessitate cumbersome table look-ups. Demonstrates how to incorporate logical constraints among hypotheses, further improving power.
Author | : Altuna Akalin |
Publisher | : CRC Press |
Total Pages | : 463 |
Release | : 2020-12-16 |
Genre | : Mathematics |
ISBN | : 1498781861 |
Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.
Author | : Robert Gentleman |
Publisher | : Springer Science & Business Media |
Total Pages | : 478 |
Release | : 2005-12-29 |
Genre | : Computers |
ISBN | : 0387293620 |
Full four-color book. Some of the editors created the Bioconductor project and Robert Gentleman is one of the two originators of R. All methods are illustrated with publicly available data, and a major section of the book is devoted to fully worked case studies. Code underlying all of the computations that are shown is made available on a companion website, and readers can reproduce every number, figure, and table on their own computers.
Author | : Yosef Hochberg |
Publisher | : |
Total Pages | : 482 |
Release | : 1987-10-05 |
Genre | : Mathematics |
ISBN | : |
Offering a balanced, up-to-date view of multiple comparison procedures, this book refutes the belief held by some statisticians that such procedures have no place in data analysis. With equal emphasis on theory and applications, it establishes the advantages of multiple comparison techniques in reducing error rates and in ensuring the validity of statistical inferences. Provides detailed descriptions of the derivation and implementation of a variety of procedures, paying particular attention to classical approaches and confidence estimation procedures. Also discusses the benefits and drawbacks of other methods. Numerous examples and tables for implementing procedures are included, making this work both practical and informative.
Author | : Nader Rifai |
Publisher | : Elsevier |
Total Pages | : 424 |
Release | : 2018-06-13 |
Genre | : Science |
ISBN | : 0128160624 |
Principles and Applications of Molecular Diagnostics serves as a comprehensive guide for clinical laboratory professionals applying molecular technology to clinical diagnosis. The first half of the book covers principles and analytical concepts in molecular diagnostics such as genomes and variants, nucleic acids isolation and amplification methods, and measurement techniques, circulating tumor cells, and plasma DNA; the second half presents clinical applications of molecular diagnostics in genetic disease, infectious disease, hematopoietic malignancies, solid tumors, prenatal diagnosis, pharmacogenetics, and identity testing. A thorough yet succinct guide to using molecular testing technology, Principles and Applications of Molecular Diagnostics is an essential resource for laboratory professionals, biologists, chemists, pharmaceutical and biotech researchers, and manufacturers of molecular diagnostics kits and instruments. - Explains the principles and tools of molecular biology - Describes standard and state-of-the-art molecular techniques for obtaining qualitative and quantitative results - Provides a detailed description of current molecular applications used to solve diagnostics tasks
Author | : Xinping Cui |
Publisher | : CRC Press |
Total Pages | : 418 |
Release | : 2021-11-18 |
Genre | : Mathematics |
ISBN | : 0429633882 |
Written by experts that include originators of some key ideas, chapters in the Handbook of Multiple Testing cover multiple comparison problems big and small, with guidance toward error rate control and insights on how principles developed earlier can be applied to current and emerging problems. Some highlights of the coverages are as follows. Error rate control is useful for controlling the incorrect decision rate. Chapter 1 introduces Tukey's original multiple comparison error rates and point to how they have been applied and adapted to modern multiple comparison problems as discussed in the later chapters. Principles endure. While the closed testing principle is more familiar, Chapter 4 shows the partitioning principle can derive confidence sets for multiple tests, which may become important as the profession goes beyond making decisions based on p-values. Multiple comparisons of treatment efficacy often involve multiple doses and endpoints. Chapter 12 on multiple endpoints explains how different choices of endpoint types lead to different multiplicity adjustment strategies, while Chapter 11 on the MCP-Mod approach is particularly useful for dose-finding. To assess efficacy in clinical trials with multiple doses and multiple endpoints, the reader can see the traditional approach in Chapter 2, the Graphical approach in Chapter 5, and the multivariate approach in Chapter 3. Personalized/precision medicine based on targeted therapies, already a reality, naturally leads to analysis of efficacy in subgroups. Chapter 13 draws attention to subtle logical issues in inferences on subgroups and their mixtures, with a principled solution that resolves these issues. This chapter has implication toward meeting the ICHE9R1 Estimands requirement. Besides the mere multiple testing methodology itself, the handbook also covers related topics like the statistical task of model selection in Chapter 7 or the estimation of the proportion of true null hypotheses (or, in other words, the signal prevalence) in Chapter 8. It also contains decision-theoretic considerations regarding the admissibility of multiple tests in Chapter 6. The issue of selected inference is addressed in Chapter 9. Comparison of responses can involve millions of voxels in medical imaging or SNPs in genome-wide association studies (GWAS). Chapter 14 and Chapter 15 provide state of the art methods for large scale simultaneous inference in these settings.
Author | : National Academies of Sciences, Engineering, and Medicine |
Publisher | : National Academies Press |
Total Pages | : 149 |
Release | : 2017-04-21 |
Genre | : Medical |
ISBN | : 0309453291 |
Advances in genetics and genomics are transforming medical practice, resulting in a dramatic growth of genetic testing in the health care system. The rapid development of new technologies, however, has also brought challenges, including the need for rigorous evaluation of the validity and utility of genetic tests, questions regarding the best ways to incorporate them into medical practice, and how to weigh their cost against potential short- and long-term benefits. As the availability of genetic tests increases so do concerns about the achievement of meaningful improvements in clinical outcomes, costs of testing, and the potential for accentuating medical care inequality. Given the rapid pace in the development of genetic tests and new testing technologies, An Evidence Framework for Genetic Testing seeks to advance the development of an adequate evidence base for genetic tests to improve patient care and treatment. Additionally, this report recommends a framework for decision-making regarding the use of genetic tests in clinical care.
Author | : Peter H. Westfall |
Publisher | : SAS Press |
Total Pages | : 0 |
Release | : 2000 |
Genre | : Computers |
ISBN | : 9781580257596 |
Does your work require multiple inferences? Are you a statistics teacher looking for a study guide to supplement the usually incomplete or outdated multiple comparisons/multiple testing material in your textbook? This workbook, the companion guide written specifically for use with Multiple Comparisons and Multiple Tests Using the SAS System, provides the supplement you need. Use this workbook and you will find problems and solutions that will enhance your understanding of the material within the main text. The workbook also provides updated information about multiple comparisons procedures, including enhancements for Release 8.1 of the SAS System. The chapters correlate with the chapters of the main text, and the format is clear and easy to use. This book and the companion text are quite useful as supplements for learning multiple comparisons procedures in standard linear models, multivariate analysis, categorical analysis, and regression and nonparametric statistics. Book jacket.