Multiphysics Modeling With Application To Biomedical Engineering
Download Multiphysics Modeling With Application To Biomedical Engineering full books in PDF, epub, and Kindle. Read online free Multiphysics Modeling With Application To Biomedical Engineering ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Z. Yang |
Publisher | : CRC Press |
Total Pages | : 175 |
Release | : 2020-07-22 |
Genre | : Mathematics |
ISBN | : 1000088871 |
The aim of this book is to introduce the simulation of various physical fields and their applications for biomedical engineering, which will provide a base for researchers in the biomedical field to conduct further investigation. The entire book is classified into three levels. It starts with the first level, which presents the single physical fields including structural analysis, fluid simulation, thermal analysis, and acoustic modeling. Then, the second level consists of various couplings between two physical fields covering structural thermal coupling, porous media, fluid structural interaction (FSI), and acoustic FSI. The third level focuses on multi-coupling that coupling with more than two physical fields in the model. Each part in all levels is organized as the physical feature, finite element implementation, modeling procedure in ANSYS, and the specific applications for biomedical engineering like the FSI study of Abdominal Aortic Aneurysm (AAA), acoustic wave transmission in the ear, and heat generation of the breast tumor. The book should help for the researchers and graduate students conduct numerical simulation of various biomedical coupling problems. It should also provide all readers with a better understanding of various couplings.
Author | : Qun Zhang |
Publisher | : Elsevier |
Total Pages | : 438 |
Release | : 2015-12-15 |
Genre | : Technology & Engineering |
ISBN | : 0124077374 |
Multiphysics Modeling: Numerical Methods and Engineering Applications: Tsinghua University Press Computational Mechanics Series describes the basic principles and methods for multiphysics modeling, covering related areas of physics such as structure mechanics, fluid dynamics, heat transfer, electromagnetic field, and noise. The book provides the latest information on basic numerical methods, also considering coupled problems spanning fluid-solid interaction, thermal-stress coupling, fluid-solid-thermal coupling, electromagnetic solid thermal fluid coupling, and structure-noise coupling. Users will find a comprehensive book that covers background theory, algorithms, key technologies, and applications for each coupling method. - Presents a wealth of multiphysics modeling methods, issues, and worked examples in a single volume - Provides a go-to resource for coupling and multiphysics problems - Covers the multiphysics details not touched upon in broader numerical methods references, including load transfer between physics, element level strong coupling, and interface strong coupling, amongst others - Discusses practical applications throughout and tackles real-life multiphysics problems across areas such as automotive, aerospace, and biomedical engineering
Author | : Ashim Datta |
Publisher | : Cambridge University Press |
Total Pages | : 533 |
Release | : 2010 |
Genre | : Medical |
ISBN | : 0521119243 |
Organised around problem solving, this book introduces the reader to computational simulation, bridging fundamental theory with real-world applications.
Author | : Alexandru Morega |
Publisher | : Academic Press |
Total Pages | : 320 |
Release | : 2020-10-02 |
Genre | : Science |
ISBN | : 0128178973 |
Mathematical and numerical modelling of engineering problems in medicine is aimed at unveiling and understanding multidisciplinary interactions and processes and providing insights useful to clinical care and technology advances for better medical equipment and systems. When modelling medical problems, the engineer is confronted with multidisciplinary problems of electromagnetism, heat and mass transfer, and structural mechanics with, possibly, different time and space scales, which may raise concerns in formulating consistent, solvable mathematical models. Computational Medical Engineering presents a number of engineering for medicine problems that may be encountered in medical physics, procedures, diagnosis and monitoring techniques, including electrical activity of the heart, hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods. The authors discuss the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling (e.g., criteria for well-posed problems); physics scaling (homogenization techniques); Constructal Law criteria in morphing shape and structure of systems with internal flows; computational domain construction (CAD and, or reconstruction techniques based on medical images); numerical modelling issues, and validation techniques used to ascertain numerical simulation results. In addition, new ideas and venues to investigate and understand finer scale models and merge them into continuous media medical physics are provided as case studies. Presents the fundamentals of mathematical and numerical modeling of engineering problems in medicine Discusses many of the most common modelling scenarios for Biomedical Engineering, including, electrical activity of the heart hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods Includes discussion of the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling, physics scaling, Constructal Law criteria in morphing shape and structure of systems with internal flows, computational domain construction, numerical modelling issues, and validation techniques used to ascertain numerical simulation results
Author | : Roger W. Pryor |
Publisher | : Mercury Learning and Information |
Total Pages | : 743 |
Release | : 2021-12-03 |
Genre | : Technology & Engineering |
ISBN | : 1683925882 |
COMSOL 5 and MATLAB are valuable software modeling tools for engineers and scientists. This updated edition includes five new models and explores a wide range of models in coordinate systems from 0D to 3D, introducing the numerical analysis techniques employed in COMSOL 5.6 and MATLAB software. The text presents electromagnetic, electronic, optical, thermal physics, and biomedical models as examples. It presents the fundamental concepts in the models and the step-by-step instructions needed to build each model. The companion files include all the built models for each step-by-step example presented in the text and the related animations, as specified. The book is designed to introduce modeling to an experienced engineer or can also be used for upper level undergraduate or graduate courses. FEATURES: Focuses on COMSOL 5.x and MATLAB models that demonstrate the use of concepts for later application in engineering, science, medicine, and biophysics for the development of devices and systems Includes companion files with executable copies of each model and related animations Includes detailed discussions of possible modeling errors and results Uses a step-by-step modeling methodology linked to the Fundamental Laws of Physics. The companion files are also available online by emailing the publisher with proof of purchase at [email protected].
Author | : Riccardo Sacco |
Publisher | : Academic Press |
Total Pages | : 856 |
Release | : 2019-07-18 |
Genre | : Technology & Engineering |
ISBN | : 0128125195 |
A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences provides a systematic methodology to the formulation of problems in biomedical engineering and the life sciences through the adoption of mathematical models based on physical principles, such as the conservation of mass, electric charge, momentum, and energy. It then teaches how to translate the mathematical formulation into a numerical algorithm that is implementable on a computer. The book employs computational models as synthesized tools for the investigation, quantification, verification, and comparison of different conjectures or scenarios of the behavior of a given compartment of the human body under physiological and pathological conditions. - Presents theoretical (modeling), biological (experimental), and computational (simulation) perspectives - Features examples, exercises, and MATLAB codes for further reader involvement - Covers basic and advanced functional and computational techniques throughout the book
Author | : Socrates Dokos |
Publisher | : Springer |
Total Pages | : 504 |
Release | : 2017-03-08 |
Genre | : Technology & Engineering |
ISBN | : 3642548016 |
This book presents a theoretical and practical overview of computational modeling in bioengineering, focusing on a range of applications including electrical stimulation of neural and cardiac tissue, implantable drug delivery, cancer therapy, biomechanics, cardiovascular dynamics, as well as fluid-structure interaction for modelling of organs, tissues, cells and devices. It covers the basic principles of modeling and simulation with ordinary and partial differential equations using MATLAB and COMSOL Multiphysics numerical software. The target audience primarily comprises postgraduate students and researchers, but the book may also be beneficial for practitioners in the medical device industry.
Author | : Guigen Zhang |
Publisher | : CRC Press |
Total Pages | : 424 |
Release | : 2017-03-03 |
Genre | : Health & Fitness |
ISBN | : 1315388456 |
This textbook is designed for an introductory course at undergraduate and graduate levels for bioengineering students. It provides a systematic way of examining bioengineering problems in a multidisciplinary computational approach. The book introduces basic concepts of multidiscipline-based computational modeling methods, provides detailed step-by-step techniques to build a model with consideration of underlying multiphysics, and discusses many important aspects of a modeling approach including results interpretation, validation, and assessment.
Author | : Layla S. Mayboudi |
Publisher | : Mercury Learning and Information |
Total Pages | : 284 |
Release | : 2019-09-20 |
Genre | : Technology & Engineering |
ISBN | : 168392214X |
This book focuses on the geometry creation techniques for use in finite element analysis. Examples are provided as a sequence of fin designs with progressively increasing complexity. A fin was selected as it is a feature widely employed for thermal management. As the content progresses, the reader learns to create or import a geometry into a FEM tool using COMSOL Multiphysics®. The fundamentals may also be applied to other commercial packages such as ANSYS® or AbaqusTM. The content can be utilized in a variety of engineering disciplines including mechanical, aerospace, biomedical, chemical, civil, and electrical. The book provides an overview of the tools available to create and interact with the geometry. It also takes a broader look on the world of geometry, showing how geometry is a fundamental part of nature and how it is interconnected with the world around us. Features: Includes example models that enable the reader to implement conceptual material in practical scenarios with broad industrial applications Provides geometry modeling examples created with built in features of COMSOL Multiphysics® v. 5.4 or imported from other dedicated CAD tools Presents meshing examples and provides practical advice on mesh generation Includes companion files with models and custom applications created with COMSOL Multiphysics® Application Builder.
Author | : Mehrzad Tabatabaian |
Publisher | : Mercury Learning and Information |
Total Pages | : 437 |
Release | : 2015-07-24 |
Genre | : Science |
ISBN | : 1942270453 |
COMSOL5 Multiphysics® is one of the most valuable software modeling tools for engineers and scientists. This book, an updated edition of the previously published, COMSOL for Engineers, covers COMSOL5 which now includes a revolutionary tool, the Application Builder. This component enables users to build apps based on COMSOL models that can be run on almost any operating system (Windows, MAC, mobile/iOS, etc.). Designed for engineers from various disciplines, the book introduces multiphysics modeling techniques and examples accompanied by practical applications using COMSOL5.x. The main objective is to introduce readers to use COMSOL as an engineering tool for modeling, by solving examples that could become a guide for modeling similar or more complicated problems. The book provides a collection of examples and modeling guidelines through which readers can build their own models. The mathematical fundamentals, engineering principles, and design criteria are presented as integral parts of the examples. At the end of chapters are references that contain more in-depth physics, technical information, and data; these are referred to throughout the book and used in the examples. COMSOL5 for Engineers could be used to complement another text that provides background training in engineering computations and methods. Exercises are provided at the end of the text for use in adoption situations. Features: •Expands the Finite Element Method (FEM) theory and adds more examples from the original edition •Outlines the new features in COMSOL5, the graphical user interface (GUI), and how to build a COMSOL app for models •Includes apps for selected model examples-with parameterization of these models •Features new and modified, solved model examples, in addition to the models provided in the original edition •Companion disc with executable copies of each model and their related animations eBook Customers: Companion files are available for downloading with order number/proof of purchase by writing to the publisher at [email protected].