Multiphase Particulate Systems in Turbulent Flows

Multiphase Particulate Systems in Turbulent Flows
Author: Wioletta Podgórska
Publisher: CRC Press
Total Pages: 482
Release: 2019-09-17
Genre: Science
ISBN: 1482235706

Multiphase Particulate Systems in Turbulent Flows: Fluid-Liquid and Solid-Liquid Dispersions provides methods necessary to analyze complex particulate systems and related phenomena including physical, chemical and mathematical description of fundamental processes influencing crystal size and shape, suspension rheology, interfacial area of drops and bubbles in extractors and bubble columns. Examples of mathematical model formulation for different processes taking place in such systems is shown. Discussing connections between turbulent mixing mechanisms and precipitation, it discusses influence of fine-scale structure of turbulence, including its intermittent character, on breakage of drops, bubbles, cells, plant cell aggregates. An important aspect of the mathematical modeling presented in the book is multi-fractal, taking into account the influence of internal intermittency on different phenomena. Key Features Provides detailed descriptions of dispersion processes in turbulent flow, interactions between dispersed entities, and continuous phase in a single volume Includes simulation models and validation experiments for liquid-liquid, gas-liquid, and solid-liquid dispersions in turbulent flows Helps reader learn formulation of mathematical models of breakage or aggregation processes using multifractal theory Explains how to solve different forms of population balance equations Presents a combination of theoretical and engineering approaches to particulate systems along with discussion of related diversity, with exercises and case studies

Multiphase Particulate Systems in Turbulent Flows

Multiphase Particulate Systems in Turbulent Flows
Author: Wioletta Podgórska
Publisher: CRC Press
Total Pages: 386
Release: 2019-09-17
Genre: Science
ISBN: 1351644653

Multiphase Particulate Systems in Turbulent Flows: Fluid-Liquid and Solid-Liquid Dispersions provides methods necessary to analyze complex particulate systems and related phenomena including physical, chemical and mathematical description of fundamental processes influencing crystal size and shape, suspension rheology, interfacial area of drops and bubbles in extractors and bubble columns. Examples of mathematical model formulation for different processes taking place in such systems is shown. Discussing connections between turbulent mixing mechanisms and precipitation, it discusses influence of fine-scale structure of turbulence, including its intermittent character, on breakage of drops, bubbles, cells, plant cell aggregates. An important aspect of the mathematical modeling presented in the book is multi-fractal, taking into account the influence of internal intermittency on different phenomena. Key Features Provides detailed descriptions of dispersion processes in turbulent flow, interactions between dispersed entities, and continuous phase in a single volume Includes simulation models and validation experiments for liquid-liquid, gas-liquid, and solid-liquid dispersions in turbulent flows Helps reader learn formulation of mathematical models of breakage or aggregation processes using multifractal theory Explains how to solve different forms of population balance equations Presents a combination of theoretical and engineering approaches to particulate systems along with discussion of related diversity, with exercises and case studies

Computational Models for Polydisperse Particulate and Multiphase Systems

Computational Models for Polydisperse Particulate and Multiphase Systems
Author: Daniele L. Marchisio
Publisher: Cambridge University Press
Total Pages: 547
Release: 2013-03-28
Genre: Technology & Engineering
ISBN: 1107328179

Providing a clear description of the theory of polydisperse multiphase flows, with emphasis on the mesoscale modelling approach and its relationship with microscale and macroscale models, this all-inclusive introduction is ideal whether you are working in industry or academia. Theory is linked to practice through discussions of key real-world cases (particle/droplet/bubble coalescence, break-up, nucleation, advection and diffusion and physical- and phase-space), providing valuable experience in simulating systems that can be applied to your own applications. Practical cases of QMOM, DQMOM, CQMOM, EQMOM and ECQMOM are also discussed and compared, as are realizable finite-volume methods. This provides the tools you need to use quadrature-based moment methods, choose from the many available options, and design high-order numerical methods that guarantee realizable moment sets. In addition to the numerous practical examples, MATLAB® scripts for several algorithms are also provided, so you can apply the methods described to practical problems straight away.

Multiphase Flow Handbook, Second Edition

Multiphase Flow Handbook, Second Edition
Author: Efstathios Michaelides
Publisher: CRC Press
Total Pages: 1559
Release: 2016-10-26
Genre: Science
ISBN: 1315354624

The Multiphase Flow Handbook, Second Edition is a thoroughly updated and reorganized revision of the late Clayton Crowe’s work, and provides a detailed look at the basic concepts and the wide range of applications in this important area of thermal/fluids engineering. Revised by the new editors, Efstathios E. (Stathis) Michaelides and John D. Schwarzkopf, the new Second Edition begins with two chapters covering fundamental concepts and methods that pertain to all the types and applications of multiphase flow. The remaining chapters cover the applications and engineering systems that are relevant to all the types of multiphase flow and heat transfer. The twenty-one chapters and several sections of the book include the basic science as well as the contemporary engineering and technological applications of multiphase flow in a comprehensive way that is easy to follow and be understood. The editors created a common set of nomenclature that is used throughout the book, allowing readers to easily compare fundamental theory with currently developing concepts and applications. With contributed chapters from sixty-two leading experts around the world, the Multiphase Flow Handbook, Second Edition is an essential reference for all researchers, academics and engineers working with complex thermal and fluid systems.

Computational Methods for Multiphase Flow

Computational Methods for Multiphase Flow
Author: Andrea Prosperetti
Publisher: Cambridge University Press
Total Pages: 392
Release: 2009-06-25
Genre: Mathematics
ISBN: 1139459902

Thanks to high-speed computers and advanced algorithms, the important field of modelling multiphase flows is an area of rapid growth. This one-stop account – now in paperback, with corrections from the first printing – is the ideal way to get to grips with this topic, which has significant applications in industry and nature. Each chapter is written by an acknowledged expert and includes extensive references to current research. All of the chapters are essentially independent and so the book can be used for a range of advanced courses and the self-study of specific topics. No other book covers so many topics related to multiphase flow, and it will therefore be warmly welcomed by researchers and graduate students of the subject across engineering, physics, and applied mathematics.

Fundamentals of Multiphase Flow

Fundamentals of Multiphase Flow
Author: Christopher E. Brennen
Publisher: Cambridge University Press
Total Pages: 376
Release: 2005-04-18
Genre: Science
ISBN: 9780521848046

Publisher Description

Statistical Treatment of Turbulent Polydisperse Particle Systems

Statistical Treatment of Turbulent Polydisperse Particle Systems
Author: J.S. Shrimpton
Publisher: Springer
Total Pages: 127
Release: 2014-06-20
Genre: Technology & Engineering
ISBN: 1447163443

In this book we will introduce the modeling process of turbulent particulate flows which are encountered in many engineering and environmental applications. These types of flows usually also involve heat and mass transfer and turbulence adds another dimension to the complexity of the problem and hence a rigorous mathematical treatment is usually required. This required mathematical background makes the learning curve for new research students and practicing engineers extremely steep. Therefore modeling process for new or existing problems is extremely slow and is usually restricted to minor improvements to the to the available models. In this book we try to gather the required mathematical knowledge and introduce them more intuitively. Many numerical simulations of basic processes and equation will be given to provide the reader with a physical understanding of the different terms in the underlying equations. We will start the modeling process from a mesoscopic level which deals with the system of an intermediate length scale between the size of the atoms or molecules and the bulk of the material. This provides a unique opportunity for the reader to intuitively add different phenomena to their models and equipped with the necessary mathematical tools derive the final models for their problems.

Multiphase Flow Analysis Using Population Balance Modeling

Multiphase Flow Analysis Using Population Balance Modeling
Author: Guan Heng Yeoh
Publisher: Butterworth-Heinemann
Total Pages: 385
Release: 2013-08-19
Genre: Science
ISBN: 0080982336

Written by leading multiphase flow and CFD experts, this book enables engineers and researchers to understand the use of PBM and CFD frameworks. Population balance approaches can now be used in conjunction with CFD, effectively driving more efficient and effective multiphase flow processes. Engineers familiar with standard CFD software, including ANSYS-CFX and ANSYS–Fluent, will be able to use the tools and approaches presented in this book in the effective research, modeling and control of multiphase flow problems. - Builds a complete understanding of the theory behind the application of population balance models and an appreciation of the scale-up of computational fluid dynamics (CFD) and population balance modeling (PBM) to a variety of engineering and industry applications in chemical, pharmaceutical, energy and petrochemical sectors - The tools in this book provide the opportunity to incorporate more accurate models in the design of chemical and particulate based multiphase processes - Enables readers to translate theory to practical use with CFD software

Transport Phenomena In Particulate Systems

Transport Phenomena In Particulate Systems
Author: José Teixeira Freire
Publisher: Bentham Science Publishers
Total Pages: 231
Release: 2012-03-31
Genre: Science
ISBN: 1608052273

This e-book presents recent advances in research in the field of particulate systems. A comprehensive background on operations involving particulate materials with a didactic approach is illustrated. Fundamentals and applications in a variety of multi-phase flow reactors are explained with a clear focus on the analysis of transport phenomena, experimental techniques and modeling. The volume spans 10 chapters covering different aspects of transport phenomena including fixed and fluidized systems, spouted beds, electrochemical and wastewater treatment reactors. This e-book will be valuable for students, engineers and researchers aiming to keep updated on the latest developments on particulate systems.

Fundamentals of Dispersed Multiphase Flows

Fundamentals of Dispersed Multiphase Flows
Author: S. Balachandar
Publisher: Cambridge University Press
Total Pages: 676
Release: 2024-03-28
Genre: Science
ISBN: 1009184547

Dispersed multiphase flows are frequently found in nature and have diverse geophysical, environmental, industrial, and energy applications. This book targets a beginning graduate student looking to learn about the physical processes that govern these flows, going from the fundamentals to the state of the art, with many exercises included.