Multigrid Methods For Finite Elements
Download Multigrid Methods For Finite Elements full books in PDF, epub, and Kindle. Read online free Multigrid Methods For Finite Elements ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Yu Zhu |
Publisher | : John Wiley & Sons |
Total Pages | : 438 |
Release | : 2006-03-10 |
Genre | : Science |
ISBN | : 0471786373 |
This is the first comprehensive monograph that features state-of-the-art multigrid methods for enhancing the modeling versatility, numerical robustness, and computational efficiency of one of the most popular classes of numerical electromagnetic field modeling methods: the method of finite elements. The focus of the publication is the development of robust preconditioners for the iterative solution of electromagnetic field boundary value problems (BVPs) discretized by means of finite methods. Specifically, the authors set forth their own successful attempts to utilize concepts from multigrid and multilevel methods for the effective preconditioning of matrices resulting from the approximation of electromagnetic BVPs using finite methods. Following the authors' careful explanations and step-by-step instruction, readers can duplicate the authors' results and take advantage of today's state-of-the-art multigrid/multilevel preconditioners for finite element-based iterative electromagnetic field solvers. Among the highlights of coverage are: * Application of multigrid, multilevel, and hybrid multigrid/multilevel preconditioners to electromagnetic scattering and radiation problems * Broadband, robust numerical modeling of passive microwave components and circuits * Robust, finite element-based modal analysis of electromagnetic waveguides and cavities * Application of Krylov subspace-based methodologies for reduced-order macromodeling of electromagnetic devices and systems * Finite element modeling of electromagnetic waves in periodic structures The authors provide more than thirty detailed algorithms alongside pseudo-codes to assist readers with practical computer implementation. In addition, each chapter includes an applications section with helpful numerical examples that validate the authors' methodologies and demonstrate their computational efficiency and robustness. This groundbreaking book, with its coverage of an exciting new enabling computer-aided design technology, is an essential reference for computer programmers, designers, and engineers, as well as graduate students in engineering and applied physics.
Author | : Yu Zhu |
Publisher | : John Wiley & Sons |
Total Pages | : 453 |
Release | : 2006-02-03 |
Genre | : Science |
ISBN | : 0471741108 |
This is the first comprehensive monograph that features state-of-the-art multigrid methods for enhancing the modeling versatility, numerical robustness, and computational efficiency of one of the most popular classes of numerical electromagnetic field modeling methods: the method of finite elements. The focus of the publication is the development of robust preconditioners for the iterative solution of electromagnetic field boundary value problems (BVPs) discretized by means of finite methods. Specifically, the authors set forth their own successful attempts to utilize concepts from multigrid and multilevel methods for the effective preconditioning of matrices resulting from the approximation of electromagnetic BVPs using finite methods. Following the authors' careful explanations and step-by-step instruction, readers can duplicate the authors' results and take advantage of today's state-of-the-art multigrid/multilevel preconditioners for finite element-based iterative electromagnetic field solvers. Among the highlights of coverage are: * Application of multigrid, multilevel, and hybrid multigrid/multilevel preconditioners to electromagnetic scattering and radiation problems * Broadband, robust numerical modeling of passive microwave components and circuits * Robust, finite element-based modal analysis of electromagnetic waveguides and cavities * Application of Krylov subspace-based methodologies for reduced-order macromodeling of electromagnetic devices and systems * Finite element modeling of electromagnetic waves in periodic structures The authors provide more than thirty detailed algorithms alongside pseudo-codes to assist readers with practical computer implementation. In addition, each chapter includes an applications section with helpful numerical examples that validate the authors' methodologies and demonstrate their computational efficiency and robustness. This groundbreaking book, with its coverage of an exciting new enabling computer-aided design technology, is an essential reference for computer programmers, designers, and engineers, as well as graduate students in engineering and applied physics.
Author | : William L. Briggs |
Publisher | : SIAM |
Total Pages | : 318 |
Release | : 2000-07-01 |
Genre | : Mathematics |
ISBN | : 9780898714623 |
Mathematics of Computing -- Numerical Analysis.
Author | : Susanne Brenner |
Publisher | : Springer Science & Business Media |
Total Pages | : 369 |
Release | : 2013-03-14 |
Genre | : Mathematics |
ISBN | : 1475736584 |
A rigorous and thorough mathematical introduction to the subject; A clear and concise treatment of modern fast solution techniques such as multigrid and domain decomposition algorithms; Second edition contains two new chapters, as well as many new exercises; Previous edition sold over 3000 copies worldwide
Author | : V.V. Shaidurov |
Publisher | : Springer Science & Business Media |
Total Pages | : 345 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 940158527X |
Multigrid Methods for Finite Elements combines two rapidly developing fields: finite element methods, and multigrid algorithms. At the theoretical level, Shaidurov justifies the rate of convergence of various multigrid algorithms for self-adjoint and non-self-adjoint problems, positive definite and indefinite problems, and singular and spectral problems. At the practical level these statements are carried over to detailed, concrete problems, including economical constructions of triangulations and effective work with curvilinear boundaries, quasilinear equations and systems. Great attention is given to mixed formulations of finite element methods, which allow the simplification of the approximation of the biharmonic equation, the steady-state Stokes, and Navier--Stokes problems.
Author | : Roman Wienands |
Publisher | : CRC Press |
Total Pages | : 235 |
Release | : 2004-10-28 |
Genre | : Mathematics |
ISBN | : 1420034995 |
Before applying multigrid methods to a project, mathematicians, scientists, and engineers need to answer questions related to the quality of convergence, whether a development will pay out, whether multigrid will work for a particular application, and what the numerical properties are. Practical Fourier Analysis for Multigrid Methods uses a detaile
Author | : Wolfgang Hackbusch |
Publisher | : Springer Science & Business Media |
Total Pages | : 391 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 3662024276 |
Multi-grid methods are the most efficient tools for solving elliptic boundary value problems. The reader finds here an elementary introduction to multi-grid algorithms as well as a comprehensive convergence analysis. One section describes special applications (convection-diffusion equations, singular perturbation problems, eigenvalue problems, etc.). The book also contains a complete presentation of the multi-grid method of the second kind, which has important applications to integral equations (e.g. the "panel method") and to numerous other problems. Readers with a practical interest in multi-grid methods will benefit from this book as well as readers with a more theoretical interest.
Author | : Dietrich Braess |
Publisher | : Cambridge University Press |
Total Pages | : 348 |
Release | : 2007-04-12 |
Genre | : Mathematics |
ISBN | : 113946146X |
This definitive introduction to finite element methods was thoroughly updated for this 2007 third edition, which features important material for both research and application of the finite element method. The discussion of saddle-point problems is a highlight of the book and has been elaborated to include many more nonstandard applications. The chapter on applications in elasticity now contains a complete discussion of locking phenomena. The numerical solution of elliptic partial differential equations is an important application of finite elements and the author discusses this subject comprehensively. These equations are treated as variational problems for which the Sobolev spaces are the right framework. Graduate students who do not necessarily have any particular background in differential equations, but require an introduction to finite element methods will find this text invaluable. Specifically, the chapter on finite elements in solid mechanics provides a bridge between mathematics and engineering.
Author | : W. Hackbusch |
Publisher | : Springer |
Total Pages | : 662 |
Release | : 1986-01-01 |
Genre | : Mathematics |
ISBN | : 9783540119555 |
Author | : Klaus Hollig |
Publisher | : SIAM |
Total Pages | : 155 |
Release | : 2003-01-01 |
Genre | : Mathematics |
ISBN | : 9780898717532 |
Finite Element Methods with B-Splines describes new weighted approximation techniques, combining the computational advantages of B-splines and standard finite elements. In particular, no grid generation is necessary, which eliminates a difficult and often time-consuming preprocessing step. The meshless methods are very efficient and yield highly accurate solutions with relatively few parameters. This is illustrated for typical boundary value problems in fluid flow, heat conduction, and elasticity. Topics discussed by the author include basic finite element theory, algorithms for B-splines, weighted bases, stability and error estimates, multigrid techniques, applications, and numerical examples.