Multidisciplinary Microfluidic And Nanofluidic Lab On A Chip
Download Multidisciplinary Microfluidic And Nanofluidic Lab On A Chip full books in PDF, epub, and Kindle. Read online free Multidisciplinary Microfluidic And Nanofluidic Lab On A Chip ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Xiujun (James) Li |
Publisher | : Newnes |
Total Pages | : 486 |
Release | : 2021-09-19 |
Genre | : Science |
ISBN | : 0444594612 |
Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-Chip: Principles and Applications provides chemists, biophysicists, engineers, life scientists, biotechnologists, and pharmaceutical scientists with the principles behind the design, manufacture, and testing of life sciences microfluidic systems. This book serves as a reference for technologies and applications in multidisciplinary areas, with an emphasis on quickly developing or new emerging areas, including digital microfluidics, nanofluidics, papers-based microfluidics, and cell biology. The book offers practical guidance on how to design, analyze, fabricate, and test microfluidic devices and systems for a wide variety of applications including separations, disease detection, cellular analysis, DNA analysis, proteomics, and drug delivery. Calculations, solved problems, data tables, and design rules are provided to help researchers understand microfluidic basic theory and principles and apply this knowledge to their own unique designs. Recent advances in microfluidics and microsystems for life sciences are impacting chemistry, biophysics, molecular, cell biology, and medicine for applications that include DNA analysis, drug discovery, disease research, and biofluid and environmental monitoring. - Provides calculations, solved problems, data tables and design rules to help understand microfluidic basic theory and principles - Gives an applied understanding of the principles behind the design, manufacture, and testing of microfluidic systems - Emphasizes on quickly developing and emerging areas, including digital microfluidics, nanofluidics, papers-based microfluidics, and cell biology
Author | : Andreas Manz |
Publisher | : Royal Society of Chemistry |
Total Pages | : 307 |
Release | : 2020-09-24 |
Genre | : Science |
ISBN | : 1782628339 |
Responding to the need for an affordable, easy-to-read textbook that introduces microfluidics to undergraduate and postgraduate students, this concise book will provide a broad overview of the important theoretical and practical aspects of microfluidics and lab-on-a-chip, as well as its applications.
Author | : Savas Tasoglu |
Publisher | : MDPI |
Total Pages | : 213 |
Release | : 2019-01-10 |
Genre | : Technology & Engineering |
ISBN | : 3038974676 |
This book is a printed edition of the Special Issue "3D Printed Microfluidic Devices" that was published in Micromachines
Author | : Dongqing Li |
Publisher | : Springer Science & Business Media |
Total Pages | : 2242 |
Release | : 2008-08-06 |
Genre | : Technology & Engineering |
ISBN | : 0387324682 |
Covering all aspects of transport phenomena on the nano- and micro-scale, this encyclopedia features over 750 entries in three alphabetically-arranged volumes including the most up-to-date research, insights, and applied techniques across all areas. Coverage includes electrical double-layers, optofluidics, DNC lab-on-a-chip, nanosensors, and more.
Author | : Yu Song |
Publisher | : John Wiley & Sons |
Total Pages | : 576 |
Release | : 2018-05-07 |
Genre | : Science |
ISBN | : 3527341064 |
The first book offering a global overview of fundamental microfluidics and the wide range of possible applications, for example, in chemistry, biology, and biomedical science. As such, it summarizes recent progress in microfluidics, including its origin and development, the theoretical fundamentals, and fabrication techniques for microfluidic devices. The book also comprehensively covers the fluid mechanics, physics and chemistry as well as applications in such different fields as detection and synthesis of inorganic and organic materials. A useful reference for non-specialists and a basic guideline for research scientists and technicians already active in this field or intending to work in microfluidics.
Author | : Fatima H Labeed |
Publisher | : Royal Society of Chemistry |
Total Pages | : 295 |
Release | : 2014-10-24 |
Genre | : Science |
ISBN | : 1849737606 |
The concept of a miniaturised laboratory on a disposable chip is now a reality, and in everyday use in industry, medicine and defence. New devices are launched all the time, prompting the need for a straightforward guide to the design and manufacture of lab-on-a-chip (LOC) devices. This book presents a modular approach to the construction and integration of LOC components in detection science. The editors have brought together some of the leading experts from academia and industry to present an accessible guide to the technology available and its potential. Several chapters are devoted to applications, presenting both the sampling regime and detection methods needed. Further chapters describe the integration of LOC devices, not only with each other but also into existing technologies. With insights into LOC applications, from biosensing to molecular and chemical analysis, and presenting scaled-down versions of existing technology alongside unique approaches that exploit the physics of the micro and nano-scale, this book will appeal to newcomers to the field and practitioners requiring a convenient reference.
Author | : Bastian E. Rapp |
Publisher | : Elsevier |
Total Pages | : 850 |
Release | : 2022-10-07 |
Genre | : Technology & Engineering |
ISBN | : 0128240237 |
Microfluidics: Modeling, Mechanics and Mathematics, Second Edition provides a practical, lab-based approach to nano- and microfluidics, including a wealth of practical techniques, protocols and experiments ready to be put into practice in both research and industrial settings. This practical approach is ideally suited to researchers and R&D staff in industry. Additionally, the interdisciplinary approach to the science of nano- and microfluidics enables readers from a range of different academic disciplines to broaden their understanding. Alongside traditional fluid/transport topics, the book contains a wealth of coverage of materials and manufacturing techniques, chemical modification/surface functionalization, biochemical analysis, and the biosensors involved. This fully updated new edition also includes new sections on viscous flows and centrifugal microfluidics, expanding the types of platforms covered to include centrifugal, capillary and electro kinetic platforms. - Provides a practical guide to the successful design and implementation of nano- and microfluidic processes (e.g., biosensing) and equipment (e.g., biosensors, such as diabetes blood glucose sensors) - Provides techniques, experiments and protocols that are ready to be put to use in the lab, or in an academic or industry setting - Presents a collection of 3D-CAD and image files on a companion website
Author | : Yu-suke Torisawa |
Publisher | : MDPI |
Total Pages | : 262 |
Release | : 2020-05-27 |
Genre | : Technology & Engineering |
ISBN | : 3039289179 |
Recent advances in microsystems technology and cell culture techniques have led to the development of organ-on-chip microdevices that produce tissue-level functionality, not possible with conventional culture models, by recapitulating natural tissue architecture and microenvironmental cues within microfluidic devices. Since the physiological microenvironments in living systems are mostly microfluidic in nature, the use of microfluidic devices facilitates engineering cellular microenvironments; the microfluidic devices allow for control of local chemical gradients and dynamic mechanical forces, which play important roles in cellular viability and function. The organ-on-chip microdevices have great potential to promote drug discovery and development, to model human physiology and disease, and to replace animal models for efficacy and toxicity testing. Recently, induced pluripotent stem (iPS) cells have been leveraged to develop organs-on-chips, which enable various types of organ models and disease models not possible with primary cells and cell lines. This Special Issue seeks to showcase research papers, short communications, and review articles that focus on: (1) microdevices to mimic or control cellular microenvironment; (2) microdevices to evaluate interactions between different organ models; (3) microdevices to maintain iPS cells or iPSC-derived cells; and (4) sensors and techniques to evaluate drug efficacy or toxicity.
Author | : Arpana Parihar |
Publisher | : Royal Society of Chemistry |
Total Pages | : 694 |
Release | : 2024-08-14 |
Genre | : Technology & Engineering |
ISBN | : 1837673489 |
The global miniature devices market is poised to surpass a valuation of $12–$15 billion USD by the year 2030. Lab-on-a-chip (LOC) devices are a vital component of this market. Comprising a network of microchannels, electrical circuits, sensors, and electrodes, LOC is a miniaturized integrated device platform used to streamline day-to-day laboratory functions, run cost-effective clinical analyses and curb the need for centralized instrumentation facilities in remote areas. Compact design, portability, ease of operation, low sample volume, short reaction time, and parallel investigation stand as the pivotal factors driving the widespread acceptance of LOC within the biomedical community. In this book, the Editors meticulously explore LOC through three key ‘Ts’: Theories (microfluidics, microarrays, instrumentation, software); Technologies (additive manufacturing, artificial intelligence, computational thinking, smart consumables, scale-up tactics, and biofouling); and Trends (biomedical analysis, point-of-care diagnostics, personalized healthcare, bioactive synthesis, disease diagnosis, and space applications) This comprehensive text not only provides readers with a thorough understanding of the current advancements in the LOC domain but also offers valuable insights to support the utilization of miniaturized devices for enhanced healthcare practices. Aimed at career researchers looking for instruction in the topic and newcomers to the area, the book is also useful for undergraduate and postgraduate students embarking on new studies or for those interested in reading about the LOC platform.
Author | : Paul C.H. Li |
Publisher | : Springer Nature |
Total Pages | : 227 |
Release | : 2023-07-10 |
Genre | : Science |
ISBN | : 1071633236 |
This detailed volume explores the use of single-cell assays in research for drug discovery, microfluidics, and more. The book delves into methodologies involving a variety of cell types and diseases, small molecules and biologics, as well as studies of the genome and transciptome. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Single-Cell Assays: Microfluidics, Genomics, and Drug Discovery serves to enable researchers to obtain a rapid overview in state-of-the-art microfluidic single-cell assays and an impression of what possibilities these assays offer to drug discovery.