Evolution of Thin Film Morphology

Evolution of Thin Film Morphology
Author: Matthew Pelliccione
Publisher: Springer Science & Business Media
Total Pages: 206
Release: 2008-01-29
Genre: Technology & Engineering
ISBN: 0387751092

The focus of this book is on modeling and simulations used in research on the morphological evolution during film growth. The authors emphasize the detailed mathematical formulation of the problem. The book will enable readers themselves to set up a computational program to investigate specific topics of interest in thin film deposition. It will benefit those working in any discipline that requires an understanding of thin film growth processes.

Evolution of Thin Film Morphology

Evolution of Thin Film Morphology
Author: Matthew Pelliccione
Publisher: Springer
Total Pages: 206
Release: 2010-11-19
Genre: Technology & Engineering
ISBN: 9781441925800

The focus of this book is on modeling and simulations used in research on the morphological evolution during film growth. The authors emphasize the detailed mathematical formulation of the problem. The book will enable readers themselves to set up a computational program to investigate specific topics of interest in thin film deposition. It will benefit those working in any discipline that requires an understanding of thin film growth processes.

Morphology of Thin Film Growth

Morphology of Thin Film Growth
Author: R. W. Collins
Publisher:
Total Pages: 4
Release: 1992
Genre:
ISBN:

Thin films prepared by vapor deposition methods have a range of applications which demand control over the microstructural, electronic, and/or optical properties. Empirical classification schemes for the morphology of vapor-deposited thin films have been developed over the years in attempts to provide physical insights into the relationships between preparation parameters and resulting film properties. A variety of computational techniques have also been applied to model film growth and to elucidate, the physical principles that account for the observed morphological development. These include continuum, molecular dynamics, Monte Carlo, and ballistic aggregation techniques. In continuum models of film growth, many authors have studied the stability of one-dimensional surface profiles in response to sinusoidal perturbations of wavelength, lambda r. Effects of finite atomic size and shadowing by asperities have been proposed to enhance the perturbations, whereas adatom surface diffusion damps them. A smooth profile can be regained for lambda r lambda o, where lambda o is the adatom diffusion length. When lambda r lambda o, a modulated profile develops that appears analogous to experimentally-observable columnar morphology. In the experimental situation, clustering associated with initial nucleation is the dominant surface perturbation for thin film deposition on dissimilar substrates. It is technologically important to determine and control the evolution of surface morphology with subsequent film growth. Of direct importance here is the ability to fabricate multilayered structures with smooth interfaces.

Thin Film Physics And Devices: Fundamental Mechanism, Materials And Applications For Thin Films

Thin Film Physics And Devices: Fundamental Mechanism, Materials And Applications For Thin Films
Author: Jianguo Zhu
Publisher: World Scientific
Total Pages: 706
Release: 2021-06-18
Genre: Science
ISBN: 9811224005

Thin films have an extremely broad range of applications from electronics and optics to new materials and devices. Collaborative and multidisciplinary efforts from physicists, materials scientists, engineers and others have established and advanced a field with key pillars constituting (i) the synthesis and processing of thin films, (ii) the understanding of physical properties in relation to the nanometer scale, (iii) the design and fabrication of nano-devices or devices with thin film materials as building blocks, and (iv) the design and construction of novel tools for characterization of thin films.Against the backdrop of the increasingly interdisciplinary field, this book sets off to inform the basics of thin film physics and thin film devices. Readers are systematically introduced to the synthesis, processing and application of thin films; they will also study the formation of thin films, their structure and defects, and their various properties — mechanical, electrical, semiconducting, magnetic, and superconducting. With a primary focus on inorganic thin film materials, the book also ventures on organic materials such as self-assembled monolayers and Langmuir-Blodgett films.This book will be effective as a teaching or reference material in the various disciplines, ranging from Materials Science and Engineering, Electronic Science and Engineering, Electronic Materials and Components, Semiconductor Physics and Devices, to Applied Physics and more. The original Chinese publication has been instrumental in this purpose across many Chinese universities and colleges.

Science and Technology of Thin Films

Science and Technology of Thin Films
Author: F. C. Matacotta
Publisher: World Scientific
Total Pages: 369
Release: 1995
Genre: Science
ISBN: 9810221932

This book brings together detailed discussions by leading experts on the various innovative aspects of thin films growth, deposition and characterization techniques, and new thin film materials and devices. It addresses through the different viewpoints of the contributors, the major problem of thin films science - the relation between the energy of the condensing species and the resulting properties of the films. Some of the issues considered include energetic condensation, bombardment stabilization, pulsed electron beam ablation, orientation and self-organization of organic, ferroelectric and nanoparticle thin films. Several chapters focus on applications such as the recent developments in organic optoelectronics, large area electronic technology and superconducting thin film devices.

Surface Science

Surface Science
Author: K. Oura
Publisher: Springer Science & Business Media
Total Pages: 443
Release: 2013-03-14
Genre: Science
ISBN: 3662051796

The most important aspects of modern surface science are covered. All topics are presented in a concise and clear form accessible to a beginner. At the same time, the coverage is comprehensive and at a high technical level, with emphasis on the fundamental physical principles. Numerous examples, references, practice exercises, and problems complement this remarkably complete treatment, which will also serve as an excellent reference for researchers and practitioners. The textbook is idea for students in engineering and physical sciences.

The Materials Science of Thin Films

The Materials Science of Thin Films
Author: Milton Ohring
Publisher: Academic Press
Total Pages: 744
Release: 1992
Genre: Science
ISBN: 9780125249904

Prepared as a textbook complete with problems after each chapter, specifically intended for classroom use in universities.

Morphological Organization in Epitaxial Growth and Removal

Morphological Organization in Epitaxial Growth and Removal
Author: Zhenyu Zhang
Publisher: World Scientific
Total Pages: 516
Release: 1998
Genre: Science
ISBN: 9789810234713

This book provides a critical assessment of the current status and the likely future directions of thin-film growth, an area of exceptional technological importance. Its emphasis is on descriptions of the atomic-scale mechanisms controlling the dynamics and thermodynamics of the morphological evolution of the growth front of thin films in diverse systems of fundamental and technological significance. The book covers most of the original and important conceptual developments made in the 1990s. The articles, written by leading experts, are arranged in five major categories ? the theoretical basis, semiconductor-on-semiconductor growth, metal-on-metal growth, metal-on-semiconductor growth, and removal as the inverse process of growth. This book, the only one of its kind in this decade, will prove to be an indispensable reference source for active researchers, those having peripheral interest, and graduate students starting out in the field.