Monitoring Multimode Continuous Processes
Download Monitoring Multimode Continuous Processes full books in PDF, epub, and Kindle. Read online free Monitoring Multimode Continuous Processes ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Marcos Quiñones-Grueiro |
Publisher | : Springer Nature |
Total Pages | : 166 |
Release | : 2020-08-04 |
Genre | : Technology & Engineering |
ISBN | : 3030547388 |
This book examines recent methods for data-driven fault diagnosis of multimode continuous processes. It formalizes, generalizes, and systematically presents the main concepts, and approaches required to design fault diagnosis methods for multimode continuous processes. The book provides both theoretical and practical tools to help readers address the fault diagnosis problem by drawing data-driven methods from at least three different areas: statistics, unsupervised, and supervised learning.
Author | : Xiangyu Kong |
Publisher | : Springer Nature |
Total Pages | : 324 |
Release | : |
Genre | : |
ISBN | : 981998775X |
Author | : Quanmin Zhu |
Publisher | : Springer |
Total Pages | : 455 |
Release | : 2018-04-20 |
Genre | : Technology & Engineering |
ISBN | : 9811072124 |
This book presents the most important findings from the 9th International Conference on Modelling, Identification and Control (ICMIC’17), held in Kunming, China on July 10–12, 2017. It covers most aspects of modelling, identification, instrumentation, signal processing and control, with a particular focus on the applications of research in multi-agent systems, robotic systems, autonomous systems, complex systems, and renewable energy systems. The book gathers thirty comprehensively reviewed and extended contributions, which help to promote evolutionary computation, artificial intelligence, computation intelligence and soft computing techniques to enhance the safety, flexibility and efficiency of engineering systems. Taken together, they offer an ideal reference guide for researchers and engineers in the fields of electrical/electronic engineering, mechanical engineering and communication engineering.
Author | : Shantanu Pal |
Publisher | : Springer Nature |
Total Pages | : 219 |
Release | : 2022-09-02 |
Genre | : Technology & Engineering |
ISBN | : 3031082702 |
This book highlights the latest design and development of security issues and various defences to construct safe, secure and trusted Cyber-Physical Systems (CPS). In addition, the book presents a detailed analysis of the recent approaches to security solutions and future research directions for large-scale CPS, including its various challenges and significant security requirements. Furthermore, the book provides practical guidance on delivering robust, privacy, and trust-aware CPS at scale. Finally, the book presents a holistic insight into IoT technologies, particularly its latest development in strategic applications in mission-critical systems, including large-scale Industrial IoT, Industry 4.0, and Industrial Control Systems. As such, the book offers an essential reference guide about the latest design and development in CPS for students, engineers, designers, and professional developers.
Author | : Zhiqiang Ge |
Publisher | : Springer Science & Business Media |
Total Pages | : 204 |
Release | : 2012-11-28 |
Genre | : Technology & Engineering |
ISBN | : 1447145135 |
Given their key position in the process control industry, process monitoring techniques have been extensively investigated by industrial practitioners and academic control researchers. Multivariate statistical process control (MSPC) is one of the most popular data-based methods for process monitoring and is widely used in various industrial areas. Effective routines for process monitoring can help operators run industrial processes efficiently at the same time as maintaining high product quality. Multivariate Statistical Process Control reviews the developments and improvements that have been made to MSPC over the last decade, and goes on to propose a series of new MSPC-based approaches for complex process monitoring. These new methods are demonstrated in several case studies from the chemical, biological, and semiconductor industrial areas. Control and process engineers, and academic researchers in the process monitoring, process control and fault detection and isolation (FDI) disciplines will be interested in this book. It can also be used to provide supplementary material and industrial insight for graduate and advanced undergraduate students, and graduate engineers. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
Author | : Ankur Kumar |
Publisher | : MLforPSE |
Total Pages | : 365 |
Release | : 2024-01-12 |
Genre | : Computers |
ISBN | : |
This book is designed to help readers quickly gain a working knowledge of machine learning-based techniques that are widely employed for building equipment condition monitoring, plantwide monitoring , and predictive maintenance solutions in process industry . The book covers a broad spectrum of techniques ranging from univariate control charts to deep learning-based prediction of remaining useful life. Consequently, the readers can leverage the concepts learned to build advanced solutions for fault detection, fault diagnosis, and fault prognosis. The application focused approach of the book is reader friendly and easily digestible to the practicing and aspiring process engineers and data scientists. Upon completion, readers will be able to confidently navigate the Prognostics and Health Management literature and make judicious selection of modeling approaches suitable for their problems. This book has been divided into seven parts. Part 1 lays down the basic foundations of ML-assisted process and equipment condition monitoring, and predictive maintenance. Part 2 provides in-detail presentation of classical ML techniques for univariate signal monitoring. Different types of control charts and time-series pattern matching methodologies are discussed. Part 3 is focused on the widely popular multivariate statistical process monitoring (MSPM) techniques. Emphasis is paid to both the fault detection and fault isolation/diagnosis aspects. Part 4 covers the process monitoring applications of classical machine learning techniques such as k-NN, isolation forests, support vector machines, etc. These techniques come in handy for processes that cannot be satisfactorily handled via MSPM techniques. Part 5 navigates the world of artificial neural networks (ANN) and studies the different ANN structures that are commonly employed for fault detection and diagnosis in process industry. Part 6 focusses on vibration-based monitoring of rotating machinery and Part 7 deals with prognostic techniques for predictive maintenance applications. Broadly, the book covers the following: Exploratory analysis of process data Best practices for process monitoring and predictive maintenance solutions Univariate monitoring via control charts and time series data mining Multivariate statistical process monitoring techniques (PCA, PLS, FDA, etc.) Machine learning and deep learning techniques to handle dynamic, nonlinear, and multimodal processes Fault detection and diagnosis of rotating machinery using vibration data Remaining useful life predictions for predictive maintenance
Author | : Chris Aldrich |
Publisher | : Springer Science & Business Media |
Total Pages | : 388 |
Release | : 2013-06-15 |
Genre | : Computers |
ISBN | : 1447151852 |
This unique text/reference describes in detail the latest advances in unsupervised process monitoring and fault diagnosis with machine learning methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections. Topics and features: discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods; examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning; describes the use of spectral methods in process fault diagnosis.
Author | : Alessio Serafini |
Publisher | : CRC Press |
Total Pages | : 258 |
Release | : 2017-07-20 |
Genre | : Mathematics |
ISBN | : 1351645005 |
Quantum Continuous Variables introduces the theory of continuous variable quantum systems, from its foundations based on the framework of Gaussian states to modern developments, including its applications to quantum information and forthcoming quantum technologies. This new book addresses the theory of Gaussian states, operations, and dynamics in great depth and breadth, through a novel approach that embraces both the Hilbert space and phase descriptions. The volume includes coverage of entanglement theory and quantum information protocols, and their connection with relevant experimental set-ups. General techniques for non-Gaussian manipulations also emerge as the treatment unfolds, and are demonstrated with specific case studies. This book will be of interest to graduate students looking to familiarise themselves with the field, in addition to experienced researchers eager to enhance their understanding of its theoretical methods. It will also appeal to experimentalists searching for a rigorous but accessible treatment of the theory in the area.
Author | : Derong Liu |
Publisher | : Springer |
Total Pages | : 951 |
Release | : 2017-11-07 |
Genre | : Computers |
ISBN | : 3319700871 |
The six volume set LNCS 10634, LNCS 10635, LNCS 10636, LNCS 10637, LNCS 10638, and LNCS 10639 constitues the proceedings of the 24rd International Conference on Neural Information Processing, ICONIP 2017, held in Guangzhou, China, in November 2017. The 563 full papers presented were carefully reviewed and selected from 856 submissions. The 6 volumes are organized in topical sections on Machine Learning, Reinforcement Learning, Big Data Analysis, Deep Learning, Brain-Computer Interface, Computational Finance, Computer Vision, Neurodynamics, Sensory Perception and Decision Making, Computational Intelligence, Neural Data Analysis, Biomedical Engineering, Emotion and Bayesian Networks, Data Mining, Time-Series Analysis, Social Networks, Bioinformatics, Information Security and Social Cognition, Robotics and Control, Pattern Recognition, Neuromorphic Hardware and Speech Processing.
Author | : Mario R. Eden |
Publisher | : Elsevier |
Total Pages | : 2620 |
Release | : 2018-07-19 |
Genre | : Technology & Engineering |
ISBN | : 0444642420 |
Process Systems Engineering brings together the international community of researchers and engineers interested in computing-based methods in process engineering. This conference highlights the contributions of the PSE community towards the sustainability of modern society and is based on the 13th International Symposium on Process Systems Engineering PSE 2018 event held San Diego, CA, July 1-5 2018. The book contains contributions from academia and industry, establishing the core products of PSE, defining the new and changing scope of our results, and future challenges. Plenary and keynote lectures discuss real-world challenges (globalization, energy, environment and health) and contribute to discussions on the widening scope of PSE versus the consolidation of the core topics of PSE. - Highlights how the Process Systems Engineering community contributes to the sustainability of modern society - Establishes the core products of Process Systems Engineering - Defines the future challenges of Process Systems Engineering