Molecular Materials And Functional Polymers For Advanced Devices
Download Molecular Materials And Functional Polymers For Advanced Devices full books in PDF, epub, and Kindle. Read online free Molecular Materials And Functional Polymers For Advanced Devices ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : National Research Council |
Publisher | : National Academies Press |
Total Pages | : 238 |
Release | : 2003-03-19 |
Genre | : Science |
ISBN | : 0309168392 |
Chemistry and chemical engineering have changed significantly in the last decade. They have broadened their scopeâ€"into biology, nanotechnology, materials science, computation, and advanced methods of process systems engineering and controlâ€"so much that the programs in most chemistry and chemical engineering departments now barely resemble the classical notion of chemistry. Beyond the Molecular Frontier brings together research, discovery, and invention across the entire spectrum of the chemical sciencesâ€"from fundamental, molecular-level chemistry to large-scale chemical processing technology. This reflects the way the field has evolved, the synergy at universities between research and education in chemistry and chemical engineering, and the way chemists and chemical engineers work together in industry. The astonishing developments in science and engineering during the 20th century have made it possible to dream of new goals that might previously have been considered unthinkable. This book identifies the key opportunities and challenges for the chemical sciences, from basic research to societal needs and from terrorism defense to environmental protection, and it looks at the ways in which chemists and chemical engineers can work together to contribute to an improved future.
Author | : Paras N. Prasad |
Publisher | : Springer Science & Business Media |
Total Pages | : 691 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 1461524474 |
This book presents the proceedings of the Second International Conference on Frontiers of Polymers and Advanced Materials held in Jakarta, Indonesia during January 10-15, 1993. This conference was organized and sponsored by the Indonesian Institute of Sciences (LIPI), the State University of New York (SUNY) at Buffalo, the Agency for Assessment and Application of Technology (BPPT), and the Indonesian Polymer Association. The 244 participants represented a total of 24 countries and a wide variety of academic, industrial and government groups. The inauguration was held in the Royal Palace and was performed by President Soeharto of Indonesia. High level media coverage ensured worldwide recognition. The need for such a conference was emphasized by the fact that polymers have emerged as an important class of materials offering challenging opportunities for both fundamental research and new technological applications. There has been a tremendous growth of interest in the field of polymers, both in academia and in industry, and polymer science offers tremendous opportunities for both fundamental and applied work. This globally represented Second International Conference on Frontiers of Polymers and Advanced Materials was timely, especially given the current heightened enthusiasm for polymers and emerging novel applications.
Author | : Karl Kirchner |
Publisher | : Springer Science & Business Media |
Total Pages | : 184 |
Release | : 2001-02-01 |
Genre | : Science |
ISBN | : 9783211835999 |
From the beginning of chemistry as an exact (natural) science - almost 200 years ago - there was a more or less distinct differentiation between its various branches such as organic, inorganic, physical, analytical, or biochemistry. With the increasing insight into the connections and governing laws it soon became obvious, however, that such a clear separation could be regarded as more or less obsolete; within almost any field of chemical research one has to deal with most of the branches mentioned. Especially organic and inorganic chemistry are significant examples for this statement, overlapping considerably within the important field of organome tallic chemistry. This regime of chemistry started its advance with the discovery of dimethylzinc 150 years ago, had a highlight with the introduction of Grignard reagents around 1900, developed further with the start of lithium organyls in 1925 and literally exploded after the discovery of the first transition metal cyclopenta dienyl complex ferrocene half a century ago. The chronological sequence of the important steps, i. e. 1850 (Zn) - 1900 (Mg) - 1925 (Li) - 1950 (Fe), seems rather remarkable. The increasing group of metallocenes is not only of high theoretical and, due to the potential chirality of its members, stereochemical interest, but offers also a wide variety of extremely useful catalysts, especially for stereoselective reactions. The Austrian Chemical Society took this development into account by organizing the Twelfth International Conference on Organometallic Chemistry held in Vienna in 1985.
Author | : Jürgen O. Besenhard |
Publisher | : Springer Science & Business Media |
Total Pages | : 140 |
Release | : 2013-11-11 |
Genre | : Science |
ISBN | : 3709162114 |
Electroactive materials are playing an ever increasing role in science and technology. At present the wide range of applications for these materials include electrodes and membranes for electrochemical energy conversion and storage, electroceramic devices and sensors, organic diodes, magnetic and optical devices, and photoresists. The book summarizes the results of the special research program ‘Electroactive Materials’ established by the Austrian Science Fund. Contributions deal with plastic solar cells (invited review); conjugated polymers and organosilanes; thin-film zinc/manganese dioxide electrodes; the anode/electrolyte interface in lithium ion batteries; a novel technique for manufacturing highly conductive composite materials; a new method for conductivity relaxation measurements on mixed conductors; the application of surface science to thin films and interfaces of electroactive organic materials; preparation and radical oligomerisation of an Fe(II) complex without loss of spin-crossover properties; phase gratings in photoreactive polymers as a way to optically pumped organic lasers; and high-spatial resolution elemental analysis and mapping by analytical electron microscopy.
Author | : Xiang Cheng Zhang |
Publisher | : Woodhead Publishing |
Total Pages | : 478 |
Release | : 2016-09-22 |
Genre | : Technology & Engineering |
ISBN | : 0081003935 |
Science and Principles of Biodegradable and Bioresorbable Medical Polymers: Materials and Properties provides a practical guide to the use of biodegradable and bioresorbable polymers for study, research, and applications within medicine. Fundamentals of the basic principles and science behind the use of biodegradable polymers in advanced research and in medical and pharmaceutical applications are presented, as are important new concepts and principles covering materials, properties, and computer modeling, providing the reader with useful tools that will aid their own research, product design, and development. Supported by practical application examples, the scope and contents of the book provide researchers with an important reference and knowledge-based educational and training aid on the basics and fundamentals of these important medical polymers. - Provides a practical guide to the fundamentals, synthesis, and processing of bioresorbable polymers in medicine - Contains comprehensive coverage of material properties, including unique insights into modeling degradation - Written by an eclectic mix of international authors with experience in academia and industry
Author | : S. Banerjee |
Publisher | : Elsevier |
Total Pages | : 731 |
Release | : 2011-12-09 |
Genre | : Science |
ISBN | : 0123851432 |
Functional materials have assumed a very prominent position in several high-tech areas. Such materials are not being classified on the basis of their origin, nature of bonding or processing techniques but are classified on the basis of the functions they can perform. This is a significant departure from the earlier schemes in which materials were described as metals, alloys, ceramics, polymers, glass materials etc. Several new processing techniques have also evolved in the recent past. Because of the diversity of materials and their functions it has become extremely difficult to obtain information from single source. Functional Materials: Preparation, Processing and Applications provides a comprehensive review of the latest developments. - Serves as a ready reference for Chemistry, Physics and Materials Science researchers by covering a wide range of functional materials in one book - Aids in the design of new materials by emphasizing structure or microstructure – property correlation - Covers the processing of functional materials in detail, which helps in conceptualizing the applications of them
Author | : Nithin Kundachira Subramani |
Publisher | : Elsevier |
Total Pages | : 376 |
Release | : 2021-05-28 |
Genre | : Technology & Engineering |
ISBN | : 0128185090 |
Polymer-Based Advanced Functional Composites for Optoelectronic and Energy Applications explains how polymer-based smart composites and nanocomposites can be prepared and utilized for novel optical, sensor and energy-related applications. The book begins with an introductory section on the fundamentals of smart polymer composites, including structure-property relationships and conjugated polymers. Other sections examine optical applications, including the use of polymer-based smart composites for luminescent solar concentrators, electro-chromic applications, light conversion applications, ultraviolet shielding applications, LED encapsulation applications, sensor applications, including gas-sensing, strain sensing, robotics and tactile sensors, with final sections covering energy-related applications, including energy harvesting, conversion, storage, vibrational energy harvesting, and more. This is an essential guide for researchers, scientists and advanced students in smart polymers and materials, polymer science, composites, nanocomposites, electronics and materials science. It is also a valuable book for scientists, R&D professionals and engineers working with products that could utilize smart polymer composites. - Provides thorough coverage of the latest pioneering research in the field of polymer-based smart composites - Offers an applications-oriented approach, enabling the reader to understand state-of-the-art optical, sensor and energy applications - Includes an in-depth introductory section, covering important aspects such as structure-property relationships and the role of conjugated polymers
Author | : Hatada |
Publisher | : CRC Press |
Total Pages | : 900 |
Release | : 1997-01-02 |
Genre | : Technology & Engineering |
ISBN | : 9780824794651 |
Providing a range of information on polymers and polymerization techniques, this text covers the gamut of polymer science from synthesis, structure and properties to function and applications. It analyzes speciality polymers, including acrylics, fluoropolymers, polysiplanes, polyphosphazenes, and inorganic and conducting polymers. The book examines the stereochemistry of polymerization and the stereoregularity of polymers.
Author | : Raja Shunmugam |
Publisher | : CRC Press |
Total Pages | : 327 |
Release | : 2017-05-08 |
Genre | : Science |
ISBN | : 1315342316 |
This new book covers the synthetic as well application aspects of functional polymers. It highlights modern trends in the field and showcases the recent characterization techniques that are being employed in the field of polymer science. The chapters are written by top-notch scientists who are internationally recognized in the field. The chapters will highlight the modern trend in the field.
Author | : Wolfgang Linert |
Publisher | : Springer Science & Business Media |
Total Pages | : 224 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 3709161517 |
Most organic molecules retain their integrity when dissolved, and even though in such cases the effects exerted by solvents are, in the language of the coordination chemist, of the "outer sphere" kind, the choice of solvent can be critical to the successful outcome of an operation or preparation. Solubilities of reactants and products must be taken into account, and even if the organic principals in the reactions retain their integrity, many of the reagents are electrolytes, and their state of aggregation will affect their reactivity. In testifying to the importance of understanding solute-solvent interactions I draw attention to a large class of inorganic species for which the involvement in the chemical and physical properties by the solvent is even more deeply seated. It is comprised by the large body of metal atoms in low oxidation states for which solvent molecules intervene as reagents. At the same time, because the ions carry charges, the effects arising from outer sphere interactions are usually greater than they are for neutral molecules. To cite an example: when FeCb(s) is dissolved in water to form a dilute - say O. OlO- solution there is a complete reorganization of the coordination sphere of the cation. Whereas in the solid each cation is surrounded by six chloride ions, in the solution the dominant form is [Fe(H20)6]3+ followed by [Fe(H20)sCI]2+, [Fe(H20)4CI2]+, etc. in rapidly decreasing abundance.