Molecular Manipulation With Scanning Tunnelling Microscope
Download Molecular Manipulation With Scanning Tunnelling Microscope full books in PDF, epub, and Kindle. Read online free Molecular Manipulation With Scanning Tunnelling Microscope ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : |
Publisher | : Elsevier |
Total Pages | : 168 |
Release | : 2011-07-13 |
Genre | : Science |
ISBN | : 0080963560 |
Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic scale", and "Chemistry at the atomic scale". This book aims to illustrate the main aspects of this ongoing scientific adventure and to anticipate the major challenges for the future in "Atomic and molecular manipulation" from fundamental knowledge to the fabrication of atomic-scale devices. - Provides a broad overview of the field to aid those new and entering into this research area - Presents a review of the historical development and evolution of the field - Offers a clear personalized view of current scanning probe microscopy research from world experts
Author | : Seizo Morita |
Publisher | : Springer Science & Business Media |
Total Pages | : 207 |
Release | : 2006-12-30 |
Genre | : Technology & Engineering |
ISBN | : 3540343156 |
Scanning tunneling microscopy has achieved remarkable progress and become the key technology for surface science. This book predicts the future development for all of scanning probe microscopy (SPM). Such forecasts may help to determine the course ultimately taken and may accelerate research and development on nanotechnology and nanoscience, as well as all in SPM-related fields in the future.
Author | : E. L. Wolf |
Publisher | : Oxford University Press |
Total Pages | : 617 |
Release | : 2012 |
Genre | : Literary Collections |
ISBN | : 0199589496 |
Electron tunnelling spectroscopy as a research tool has strongly advanced understanding of superconductivity. This book explains the physics and instrumentation behind the advances illustrated in beautiful images of atoms, rings of atoms and exotic states in high temperature superconductors, and summarizes the state of knowledge that has resulted.
Author | : Leonhard Grill |
Publisher | : Springer Science & Business Media |
Total Pages | : 202 |
Release | : 2013-08-16 |
Genre | : Science |
ISBN | : 3642388094 |
Imaging and Manipulating Molecular Orbitals celebrates the 60th anniversary of the first image of a single molecule by E. Müller. This book summarizes the advances in the field from various groups around the world who use a broad range of experimental techniques: scanning probe microscopy (STM and AFM), field emission microscopy, transmission electron microscopy, attosecond tomography and photoemission spectroscopy. The book is aimed at those who are interested in the field of molecular orbital imaging and manipulation. Included in the book are a variety of experimental techniques in combination with theoretical approaches which describe the spatial distribution and energies of the molecular orbitals. The goal is to provide the reader with an up-to-date summary on the latest developments in this field from various points of view.
Author | : Roland Wiesendanger |
Publisher | : Cambridge University Press |
Total Pages | : 664 |
Release | : 1994-09-29 |
Genre | : Science |
ISBN | : 9780521428477 |
The investigation and manipulation of matter on the atomic scale have been revolutionised by scanning tunnelling microscopy and related scanning probe techniques. This book is the first to provide a clear and comprehensive introduction to this subject. Beginning with the theoretical background of scanning tunnelling microscopy, the design and instrumentation of practical STM and associated systems are described in detail, as are the applications of these techniques in fields such as condensed matter physics, chemistry, biology, and nanotechnology. Containing 350 illustrations, and over 1200 references, this unique book represents an ideal introduction to the subject for final-year undergraduates in physics or materials science. It will also be invaluable to graduate students and researchers in any branch of science where scanning probe techniques are used.
Author | : Zhaoying Zhou |
Publisher | : Springer Science & Business Media |
Total Pages | : 1011 |
Release | : 2012-08-30 |
Genre | : Technology & Engineering |
ISBN | : 3642182933 |
“Microsystems and Nanotechnology” presents the latest science and engineering research and achievements in the fields of microsystems and nanotechnology, bringing together contributions by authoritative experts from the United States, Germany, Great Britain, Japan and China to discuss the latest advances in microelectromechanical systems (MEMS) technology and micro/nanotechnology. The book is divided into five parts – the fundamentals of microsystems and nanotechnology, microsystems technology, nanotechnology, application issues, and the developments and prospects – and is a valuable reference for students, teachers and engineers working with the involved technologies. Professor Zhaoying Zhou is a professor at the Department of Precision Instruments & Mechanology , Tsinghua University , and the Chairman of the MEMS & NEMS Society of China. Dr. Zhonglin Wang is the Director of the Center for Nanostructure Characterization, Georgia Tech, USA. Dr. Liwei Lin is a Professor at the Department of Mechanical Engineering, University of California at Berkeley, USA.
Author | : D. P. Woodruff |
Publisher | : Cambridge University Press |
Total Pages | : 612 |
Release | : 1994-03-03 |
Genre | : Science |
ISBN | : 9780521424981 |
Revised and expanded second edition of the standard work on new techniques for studying solid surfaces.
Author | : Seizo Morita |
Publisher | : Springer |
Total Pages | : 539 |
Release | : 2015-05-18 |
Genre | : Science |
ISBN | : 3319155881 |
This book presents the latest developments in noncontact atomic force microscopy. It deals with the following outstanding functions and applications that have been obtained with atomic resolution after the publication of volume 2: (1) Pauli repulsive force imaging of molecular structure, (2) Applications of force spectroscopy and force mapping with atomic resolution, (3) Applications of tuning forks, (4) Applications of atomic/molecular manipulation, (5) Applications of magnetic exchange force microscopy, (6) Applications of atomic and molecular imaging in liquids, (7) Applications of combined AFM/STM with atomic resolution, and (8) New technologies in dynamic force microscopy. These results and technologies are now expanding the capacity of the NC-AFM with imaging functions on an atomic scale toward making them characterization and manipulation tools of individual atoms/molecules and nanostructures, with outstanding capability at the level of molecular, atomic, and subatomic resolution. Since the publication of vol. 2 of the book Noncontact Atomic Force Microscopy in 2009 the noncontact atomic force microscope, which can image even insulators with atomic resolution, has achieved remarkable progress. The NC-AFM is now becoming crucial for nanoscience and nanotechnology.
Author | : Weilie Zhou |
Publisher | : Springer Science & Business Media |
Total Pages | : 550 |
Release | : 2011-08-04 |
Genre | : Technology & Engineering |
ISBN | : 1441998225 |
Devices built from three-dimensional nanoarchitectures offer a number of advantages over those based on thin-film technology, such as larger surface area to enhance the sensitivity of sensors, to collect more sunlight to improve the efficiency of solar cells, and to supply higher density emitters for increased resolution in flat panel displays. Three-dimensional nanoscale assembly has already been used to generate many prototypes of devices and sensors, including piezoelectric nanogenerators based on ZnO nanowire arrays, photovoltaic devices based on silicon nanowire array p-n junctions, and highly sensitive gas sensors based on metal oxide nanowire arrays among others. Three-Dimensional Nanoarchitectures: Designing Next-Generation Devices describes state-of-the-art synthesis, integration, and design strategies used to create three-dimensional nanoarchitectures for functional nanodevice applications. With a focus on synthesis and fabrication methods for three-dimensional nanostructure assembly and construction, coverage includes resonators, nanophotonics, sensors, supercapacitors, solar cells, and more. This book is an essential reference for a broad audience of researchers in materials science, chemistry, physics, and electrical engineering who want the latest information on synthesis routes and assembly methods. Schematics of device integration and mechanisms as well as plots of measurement data are included.
Author | : C. Joachim |
Publisher | : Springer Science & Business Media |
Total Pages | : 254 |
Release | : 1997-07-31 |
Genre | : Technology & Engineering |
ISBN | : 9780792346289 |
This volume contains the proceedings of the NATO Advanced Research Workshop on "Atomic and Molecular Wires". It was sponsored by the Ministry of Scientific Affairs Division special program on Nanoscale Science with the support of the CNRS and the Max Planck Institute. Scientists working or interested in the properties of wires at a subnanoscale were brought together in Les Houches (France) from 6 to 10 May 1996. Subnanoscale wires can be fabricated either by surface physicists (atomic wires) or by synthetic chemists (molecular wires). Both communities present their foremost advances using, for example, STM to assemble atomic lines atom for atom, to fabricate a mask for such a line or using the wide range of chemical synthesis techniques to obtain long, rigid and conjugated oligomers. Interconnecting such tiny wires to sources (voltage, current) continues to demand a great technological effort. But nanolithography associated with microfabrication or STM are now clearly identified paths for measuring the electrical resistance of an atomic or a molecular wire. The first measurements have been reported on Xe , benzene, C ' di(phenylene-ethynylene) showing 2 60 the need for a deeper understanding of transport phenomena through subnanowires. Such transport phenomena like tunnel (off-resonance) transport and Coulomb blockade have been discussed by theorists with an emphasis on the exponential decrease of the tunnel current with the wire length versus the ballistic regime of transport.