Modules Over Operads And Functors
Download Modules Over Operads And Functors full books in PDF, epub, and Kindle. Read online free Modules Over Operads And Functors ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Benoit Fresse |
Publisher | : Springer Science & Business Media |
Total Pages | : 304 |
Release | : 2009-03-26 |
Genre | : Mathematics |
ISBN | : 3540890556 |
The notion of an operad supplies both a conceptual and effective device to handle a variety of algebraic structures in various situations. Operads were introduced 40 years ago in algebraic topology in order to model the structure of iterated loop spaces. Since then, operads have been used fruitfully in many fields of mathematics and physics. This monograph begins with a review of the basis of operad theory. The main purpose is to study structures of modules over operads as a new device to model functors between categories of algebras as effectively as operads model categories of algebras.
Author | : Benoit Fresse |
Publisher | : Springer |
Total Pages | : 304 |
Release | : 2009-04-20 |
Genre | : Mathematics |
ISBN | : 3540890564 |
This monograph presents a review of the basis of operad theory. It also studies structures of modules over operads as a new device to model functors between categories of algebras as effectively as operads model categories of algebras.
Author | : Nicola Gambino |
Publisher | : American Mathematical Soc. |
Total Pages | : 122 |
Release | : 2017-09-25 |
Genre | : Mathematics |
ISBN | : 1470425769 |
The authors develop further the theory of operads and analytic functors. In particular, they introduce the bicategory of operad bimodules, that has operads as -cells, operad bimodules as -cells and operad bimodule maps as 2-cells, and prove that it is cartesian closed. In order to obtain this result, the authors extend the theory of distributors and the formal theory of monads.
Author | : Jean-Louis Loday |
Publisher | : Springer Science & Business Media |
Total Pages | : 649 |
Release | : 2012-08-08 |
Genre | : Mathematics |
ISBN | : 3642303625 |
In many areas of mathematics some “higher operations” are arising. These havebecome so important that several research projects refer to such expressions. Higher operationsform new types of algebras. The key to understanding and comparing them, to creating invariants of their action is operad theory. This is a point of view that is 40 years old in algebraic topology, but the new trend is its appearance in several other areas, such as algebraic geometry, mathematical physics, differential geometry, and combinatorics. The present volume is the first comprehensive and systematic approach to algebraic operads. An operad is an algebraic device that serves to study all kinds of algebras (associative, commutative, Lie, Poisson, A-infinity, etc.) from a conceptual point of view. The book presents this topic with an emphasis on Koszul duality theory. After a modern treatment of Koszul duality for associative algebras, the theory is extended to operads. Applications to homotopy algebra are given, for instance the Homotopy Transfer Theorem. Although the necessary notions of algebra are recalled, readers are expected to be familiar with elementary homological algebra. Each chapter ends with a helpful summary and exercises. A full chapter is devoted to examples, and numerous figures are included. After a low-level chapter on Algebra, accessible to (advanced) undergraduate students, the level increases gradually through the book. However, the authors have done their best to make it suitable for graduate students: three appendices review the basic results needed in order to understand the various chapters. Since higher algebra is becoming essential in several research areas like deformation theory, algebraic geometry, representation theory, differential geometry, algebraic combinatorics, and mathematical physics, the book can also be used as a reference work by researchers.
Author | : Benoit Fresse |
Publisher | : American Mathematical Soc. |
Total Pages | : 581 |
Release | : 2017-04-21 |
Genre | : Mathematics |
ISBN | : 1470434814 |
The Grothendieck–Teichmüller group was defined by Drinfeld in quantum group theory with insights coming from the Grothendieck program in Galois theory. The ultimate goal of this book is to explain that this group has a topological interpretation as a group of homotopy automorphisms associated to the operad of little 2-discs, which is an object used to model commutative homotopy structures in topology. This volume gives a comprehensive survey on the algebraic aspects of this subject. The book explains the definition of an operad in a general context, reviews the definition of the little discs operads, and explains the definition of the Grothendieck–Teichmüller group from the viewpoint of the theory of operads. In the course of this study, the relationship between the little discs operads and the definition of universal operations associated to braided monoidal category structures is explained. Also provided is a comprehensive and self-contained survey of the applications of Hopf algebras to the definition of a rationalization process, the Malcev completion, for groups and groupoids. Most definitions are carefully reviewed in the book; it requires minimal prerequisites to be accessible to a broad readership of graduate students and researchers interested in the applications of operads.
Author | : Donald Yau |
Publisher | : American Mathematical Soc. |
Total Pages | : 458 |
Release | : 2016-02-29 |
Genre | : Mathematics |
ISBN | : 1470427230 |
The subject of this book is the theory of operads and colored operads, sometimes called symmetric multicategories. A (colored) operad is an abstract object which encodes operations with multiple inputs and one output and relations between such operations. The theory originated in the early 1970s in homotopy theory and quickly became very important in algebraic topology, algebra, algebraic geometry, and even theoretical physics (string theory). Topics covered include basic graph theory, basic category theory, colored operads, and algebras over colored operads. Free colored operads are discussed in complete detail and in full generality. The intended audience of this book includes students and researchers in mathematics and other sciences where operads and colored operads are used. The prerequisite for this book is minimal. Every major concept is thoroughly motivated. There are many graphical illustrations and about 150 exercises. This book can be used in a graduate course and for independent study.
Author | : Marcelo Aguiar |
Publisher | : American Mathematical Soc. |
Total Pages | : 784 |
Release | : 2010 |
Genre | : Mathematics |
ISBN | : 9780821847763 |
This research monograph integrates ideas from category theory, algebra and combinatorics. It is organized in three parts. Part I belongs to the realm of category theory. It reviews some of the foundational work of Benabou, Eilenberg, Kelly and Mac Lane on monoidal categories and of Joyal and Street on braided monoidal categories, and proceeds to study higher monoidal categories and higher monoidal functors. Special attention is devoted to the notion of a bilax monoidal functor which plays a central role in this work. Combinatorics and geometry are the theme of Part II. Joyal's species constitute a good framework for the study of algebraic structures associated to combinatorial objects. This part discusses the category of species focusing particularly on the Hopf monoids therein. The notion of a Hopf monoid in species parallels that of a Hopf algebra and reflects the manner in which combinatorial structures compose and decompose. Numerous examples of Hopf monoids are given in the text. These are constructed from combinatorial and geometric data and inspired by ideas of Rota and Tits' theory of Coxeter complexes. Part III is of an algebraic nature and shows how ideas in Parts I and II lead to a unified approach to Hopf algebras. The main step is the construction of Fock functors from species to graded vector spaces. These functors are bilax monoidal and thus translate Hopf monoids in species to graded Hopf algebras. This functorial construction of Hopf algebras encompasses both quantum groups and the Hopf algebras of recent prominence in the combinatorics literature. The monograph opens a vast new area of research. It is written with clarity and sufficient detail to make it accessible to advanced graduate students.
Author | : Fosco Loregian |
Publisher | : Cambridge University Press |
Total Pages | : 331 |
Release | : 2021-07-22 |
Genre | : Mathematics |
ISBN | : 1108746128 |
This easy-to-cite handbook gives the first systematic treatment of the (co)end calculus in category theory and its applications.
Author | : Tom Leinster |
Publisher | : Cambridge University Press |
Total Pages | : 451 |
Release | : 2004-07-22 |
Genre | : Mathematics |
ISBN | : 0521532159 |
Foundations of higher dimensional category theory for graduate students and researchers in mathematics and mathematical physics.
Author | : Chengming Bai |
Publisher | : World Scientific |
Total Pages | : 318 |
Release | : 2012-02-23 |
Genre | : Mathematics |
ISBN | : 9814458333 |
The book aims to exemplify the recent developments in operad theory, in universal algebra and related topics in algebraic topology and theoretical physics. The conference has established a better connection between mathematicians working on operads (mainly the French team) and mathematicians working in universal algebra (primarily the Chinese team), and to exchange problems, methods and techniques from these two subject areas.