Concepts, Strategies and Models to Enhance Physics Teaching and Learning

Concepts, Strategies and Models to Enhance Physics Teaching and Learning
Author: Eilish McLoughlin
Publisher: Springer
Total Pages: 247
Release: 2019-07-24
Genre: Science
ISBN: 3030181375

This book discusses novel research on and practices in the field of physics teaching and learning. It gathers selected high-quality studies that were presented at the GIREP-ICPE-EPEC 2017 conference, which was jointly organised by the International Research Group on Physics Teaching (GIREP); European Physical Society – Physics Education Division, and the Physics Education Commission of the International Union of Pure and Applied Physics (IUPAP). The respective chapters address a wide variety of topics and approaches, pursued in various contexts and settings, all of which represent valuable contributions to the field of physics education research. Examples include the design of curricula and strategies to develop student competencies—including knowledge, skills, attitudes and values; workshop approaches to teacher education; and pedagogical strategies used to engage and motivate students. This book shares essential insights into current research on physics education and will be of interest to physics teachers, teacher educators and physics education researchers around the world who are working to combine research and practice in physics teaching and learning.

Teaching Einsteinian Physics in Schools

Teaching Einsteinian Physics in Schools
Author: Magdalena Kersting
Publisher: Routledge
Total Pages: 499
Release: 2021-08-30
Genre: Education
ISBN: 1000374130

In our world today, scientists and technologists speak one language of reality. Everyone else, whether they be prime ministers, lawyers, or primary school teachers speak an outdated Newtonian language of reality. While Newton saw time and space as rigid and absolute, Einstein showed that time is relative – it depends on height and velocity – and that space can stretch and distort. The modern Einsteinian perspective represents a significant paradigm shift compared with the Newtonian paradigm that underpins most of the school education today. Research has shown that young learners quickly access and accept Einsteinian concepts and the modern language of reality. Students enjoy learning about curved space, photons, gravitational waves, and time dilation; often, they ask for more! A consistent education within the Einsteinian paradigm requires rethinking of science education across the entire school curriculum, and this is now attracting attention around the world. This book brings together a coherent set of chapters written by leading experts in the field of Einsteinian physics education. The book begins by exploring the fundamental concepts of space, time, light, and gravity and how teachers can introduce these topics at an early age. A radical change in the curriculum requires new learning instruments and innovative instructional approaches. Throughout the book, the authors emphasise and discuss evidence-based approaches to Einsteinian concepts, including computer- based tools, geometrical methods, models and analogies, and simplified mathematical treatments. Teaching Einsteinian Physics in Schools is designed as a resource for teacher education students, primary and secondary science teachers, and for anyone interested in a scientifically accurate description of physical reality at a level appropriate for school education.

Teaching Physics with the Physics Suite CD

Teaching Physics with the Physics Suite CD
Author: Edward F. Redish
Publisher: John Wiley & Sons
Total Pages: 232
Release: 2003-02-03
Genre: Education
ISBN:

Written by one of the leaders of the Physics Education Research (PER) movement, Teaching Physics is a book for anyone interested in learning how to become a more effective physics teacher. Rather than reviewing specific topics in physics with hints for how to teach them and lists of common student difficulties, Teaching Physics presents a variety of tools for improving both the teaching and learning of physics--from new kinds of homework and exam problems, to surveys for figuring out what has happened in your class, to tools for taking and analyzing data using computers and video. Teaching Physics is a companion guide to using the Physics Suite, an integrated collection of research-based instructional materials for lecture, laboratory, recitation, and workshop/studio environments. But even if you don't use a single element from the Suite, Teaching Physics can help you enhance your students' learning experience.

Teaching School Physics

Teaching School Physics
Author: John L. Lewis
Publisher: Harmondsworth : Penguin
Total Pages: 422
Release: 1972
Genre: Science
ISBN:

A UNESCO source book.

Physics in a New Era

Physics in a New Era
Author: National Research Council
Publisher: National Academies Press
Total Pages: 203
Release: 2001-07-15
Genre: Science
ISBN: 0309073421

Physics at the beginning of the twenty-first century has reached new levels of accomplishment and impact in a society and nation that are changing rapidly. Accomplishments have led us into the information age and fueled broad technological and economic development. The pace of discovery is quickening and stronger links with other fields such as the biological sciences are being developed. The intellectual reach has never been greater, and the questions being asked are more ambitious than ever before. Physics in a New Era is the final report of the NRC's six-volume decadal physics survey. The book reviews the frontiers of physics research, examines the role of physics in our society, and makes recommendations designed to strengthen physics and its ability to serve important needs such as national security, the economy, information technology, and education.

Research and Innovation in Physics Education: Two Sides of the Same Coin

Research and Innovation in Physics Education: Two Sides of the Same Coin
Author: Jenaro Guisasola
Publisher: Springer Nature
Total Pages: 247
Release: 2020-08-20
Genre: Science
ISBN: 3030511820

This book describes novel approaches designed to enhance the professional training of physics teachers, and explores innovations in the teaching and learning of physics in the classroom and laboratory. It features selected contributions from the International Research Group on Physics Teaching (GIREP) and Multimedia in Physics Teaching and Learning (MPTL) Conference, held in Donostia-San Sebastian, Spain, in July 2018, which brought together two communities: researchers in physics education and physics teachers. The book covers a broad range of topics, highlighting important aspects of the relationship between research and innovation in the teaching of physics, and presenting fresh insights to help improve learning processes and instruction. Offering a contemporary vision of physics teaching and the learning process, the book is of interest to all teachers and researchers committed to teaching and learning physics on the basis of good evidence.

Physics Education

Physics Education
Author: Hans Ernst Fischer
Publisher: Springer
Total Pages: 503
Release: 2022-01-01
Genre: Science
ISBN: 9783030873905

This book offers a comprehensive overview of the theoretical background and practice of physics teaching and learning and assists in the integration of highly interesting topics into physics lessons. Researchers in the field, including experienced educators, discuss basic theories, the methods and some contents of physics teaching and learning, highlighting new and traditional perspectives on physics instruction. A major aim is to explain how physics can be taught and learned effectively and in a manner enjoyable for both the teacher and the student. Close attention is paid to aspects such as teacher competences and requirements, lesson structure, and the use of experiments in physics lessons. The roles of mathematical and physical modeling, multiple representations, instructional explanations, and digital media in physics teaching are all examined. Quantitative and qualitative research on science education in schools is discussed, as quality assessment of physics instruction. The book is of great value to researchers involved in the teaching and learning of physics, to those training physics teachers, and to pre-service and practising physics teachers.

Quantum Processes Systems, and Information

Quantum Processes Systems, and Information
Author: Benjamin Schumacher
Publisher: Cambridge University Press
Total Pages: 482
Release: 2010-03-25
Genre: Science
ISBN: 9780521875349

A new and exciting approach to the basics of quantum theory, this undergraduate textbook contains extensive discussions of conceptual puzzles and over 800 exercises and problems. Beginning with three elementary 'qubit' systems, the book develops the formalism of quantum theory, addresses questions of measurement and distinguishability, and explores the dynamics of quantum systems. In addition to the standard topics covered in other textbooks, it also covers communication and measurement, quantum entanglement, entropy and thermodynamics, and quantum information processing. This textbook gives a broad view of quantum theory by emphasizing dynamical evolution, and exploring conceptual and foundational issues. It focuses on contemporary topics, including measurement, time evolution, open systems, quantum entanglement, and the role of information.

Five Easy Lessons

Five Easy Lessons
Author: Randall Dewey Knight
Publisher: Pearson
Total Pages: 410
Release: 2002
Genre: Business & Economics
ISBN:

This widely admired standalone guide is packed with creative tips on how to enhance and expand your physics class instruction techniques. It's an invaluable companion for novice and veteran professors teaching any physics course.

The Six Core Theories of Modern Physics

The Six Core Theories of Modern Physics
Author: Charles F. Stevens
Publisher: MIT Press
Total Pages: 252
Release: 1995
Genre: Science
ISBN: 9780262691888

This text presents a summary of the basic theoretical structures of classical mechanics, electricity and magnetism, quantum mechanics, statistical physics, special relativity and modern field theories.