Modern Semiconductor Device Physics
Download Modern Semiconductor Device Physics full books in PDF, epub, and Kindle. Read online free Modern Semiconductor Device Physics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : S. M. Sze |
Publisher | : Wiley-Interscience |
Total Pages | : 584 |
Release | : 1998 |
Genre | : Technology & Engineering |
ISBN | : |
An in-depth, up-to-date presentation of the physics and operational principles of all modern semiconductor devices The companion volume to Dr. Sze's classic Physics of Semiconductor Devices, Modern Semiconductor Device Physics covers all the significant advances in the field over the past decade. To provide the most authoritative, state-of-the-art information on this rapidly developing technology, Dr. Sze has gathered the contributions of world-renowned experts in each area. Principal topics include bipolar transistors, compound-semiconductor field-effect-transistors, MOSFET and related devices, power devices, quantum-effect and hot-electron devices, active microwave diodes, high-speed photonic devices, and solar cells. Supported by hundreds of illustrations and references and a problem set at the end of each chapter, Modern Semiconductor Device Physics is the essential text/reference for electrical engineers, physicists, material scientists, and graduate students actively working in microelectronics and related fields.
Author | : Vitalii K Dugaev |
Publisher | : CRC Press |
Total Pages | : 397 |
Release | : 2021-11-15 |
Genre | : Science |
ISBN | : 1000462293 |
This textbook provides a theoretical background for contemporary trends in solid-state theory and semiconductor device physics. It discusses advanced methods of quantum mechanics and field theory and is therefore primarily intended for graduate students in theoretical and experimental physics who have already studied electrodynamics, statistical physics, and quantum mechanics. It also relates solid-state physics fundamentals to semiconductor device applications and includes auxiliary results from mathematics and quantum mechanics, making the book useful also for graduate students in electrical engineering and material science. Key Features: Explores concepts common in textbooks on semiconductors, in addition to topics not included in similar books currently available on the market, such as the topology of Hilbert space in crystals Contains the latest research and developments in the field Written in an accessible yet rigorous manner
Author | : Chenming Hu |
Publisher | : Prentice Hall |
Total Pages | : 387 |
Release | : 2010 |
Genre | : Integrated circuits |
ISBN | : 0136085253 |
Modern Semiconductor Devices for Integrated Circuits, First Edition introduces readers to the world of modern semiconductor devices with an emphasis on integrated circuit applications. KEY TOPICS Electrons and Holes in Semiconductors; Motion and Recombination of Electrons and Holes; Device Fabrication Technology; PN and Metal Semiconductor Junctions; MOS Capacitor; MOS Transistor; MOSFETs in ICs Scaling, Leakage, and Other Topics; Bipolar Transistor. MARKET Written by an experienced teacher, researcher, and expert in industry practices, this succinct and forward-looking text is appropriate for anyone interested in semiconductor devices for integrated curcuits, and serves as a suitable reference text for practicing engineers. "
Author | : J.S. Yuan |
Publisher | : Springer Science & Business Media |
Total Pages | : 352 |
Release | : 1998-05-31 |
Genre | : Technology & Engineering |
ISBN | : 9780306457241 |
The advent of the microelectronics technology has made ever-increasing numbers of small devices on a same chip. The rapid emergence of ultra-large-scaled-integrated (ULSI) technology has moved device dimension into the sub-quarter-micron regime and put more than 10 million transistors on a single chip. While traditional closed-form analytical models furnish useful intuition into how semiconductor devices behave, they no longer provide consistently accurate results for all modes of operation of these very small devices. The reason is that, in such devices, various physical mechanisms affect the device performance in a complex manner, and the conventional assumptions (i. e. , one-dimensional treatment, low-level injection, quasi-static approximation, etc. ) em ployed in developing analytical models become questionable. Thus, the use of numerical device simulation becomes important in device modeling. Researchers and engineers will rely even more on device simulation for device design and analysis in the future. This book provides comprehensive coverage of device simulation and analysis for various modem semiconductor devices. It will serve as a reference for researchers, engineers, and students who require in-depth, up-to-date information and understanding of semiconductor device physics and characteristics. The materials of the book are limited to conventional and mainstream semiconductor devices; photonic devices such as light emitting and laser diodes are not included, nor does the book cover device modeling, device fabrication, and circuit applications.
Author | : Marius Grundmann |
Publisher | : Springer Nature |
Total Pages | : 905 |
Release | : 2021-03-06 |
Genre | : Technology & Engineering |
ISBN | : 3030515699 |
The 4th edition of this highly successful textbook features copious material for a complete upper-level undergraduate or graduate course, guiding readers to the point where they can choose a specialized topic and begin supervised research. The textbook provides an integrated approach beginning from the essential principles of solid-state and semiconductor physics to their use in various classic and modern semiconductor devices for applications in electronics and photonics. The text highlights many practical aspects of semiconductors: alloys, strain, heterostructures, nanostructures, amorphous semiconductors, and noise, which are essential aspects of modern semiconductor research but often omitted in other textbooks. This textbook also covers advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, and transparent conductive oxides. The 4th edition includes many updates and chapters on 2D materials and aspects of topology. The text derives explicit formulas for many results to facilitate a better understanding of the topics. Having evolved from a highly regarded two-semester course on the topic, The Physics of Semiconductors requires little or no prior knowledge of solid-state physics. More than 2100 references guide the reader to historic and current literature including original papers, review articles and topical books, providing a go-to point of reference for experienced researchers as well.
Author | : J.-P. Colinge |
Publisher | : Springer Science & Business Media |
Total Pages | : 442 |
Release | : 2007-05-08 |
Genre | : Technology & Engineering |
ISBN | : 0306476223 |
Physics of Semiconductor Devices covers both basic classic topics such as energy band theory and the gradual-channel model of the MOSFET as well as advanced concepts and devices such as MOSFET short-channel effects, low-dimensional devices and single-electron transistors. Concepts are introduced to the reader in a simple way, often using comparisons to everyday-life experiences such as simple fluid mechanics. They are then explained in depth and mathematical developments are fully described. Physics of Semiconductor Devices contains a list of problems that can be used as homework assignments or can be solved in class to exemplify the theory. Many of these problems make use of Matlab and are aimed at illustrating theoretical concepts in a graphical manner.
Author | : Donald A. Neamen |
Publisher | : |
Total Pages | : 746 |
Release | : 2003 |
Genre | : Semiconductores |
ISBN | : 9780071198622 |
This text aims to provide the fundamentals necessary to understand semiconductor device characteristics, operations and limitations. Quantum mechanics and quantum theory are explored, and this background helps give students a deeper understanding of the essentials of physics and semiconductors.
Author | : Kevin F. Brennan |
Publisher | : Cambridge University Press |
Total Pages | : 784 |
Release | : 1999-02-13 |
Genre | : Science |
ISBN | : 9780521596626 |
Modern fabrication techniques have made it possible to produce semiconductor devices whose dimensions are so small that quantum mechanical effects dominate their behavior. This book describes the key elements of quantum mechanics, statistical mechanics, and solid-state physics that are necessary in understanding these modern semiconductor devices. The author begins with a review of elementary quantum mechanics, and then describes more advanced topics, such as multiple quantum wells. He then disusses equilibrium and nonequilibrium statistical mechanics. Following this introduction, he provides a thorough treatment of solid-state physics, covering electron motion in periodic potentials, electron-phonon interaction, and recombination processes. The final four chapters deal exclusively with real devices, such as semiconductor lasers, photodiodes, flat panel displays, and MOSFETs. The book contains many homework exercises and is suitable as a textbook for electrical engineering, materials science, or physics students taking courses in solid-state device physics. It will also be a valuable reference for practising engineers in optoelectronics and related areas.
Author | : Sandip Tiwari |
Publisher | : Academic Press |
Total Pages | : 845 |
Release | : 2013-10-22 |
Genre | : Science |
ISBN | : 148328929X |
This book provides one of the most rigorous treatments of compound semiconductor device physics yet published. A complete understanding of modern devices requires a working knowledge of low-dimensional physics, the use of statistical methods, and the use of one-, two-, and three-dimensional analytical and numerical analysis techniques. With its systematic and detailed**discussion of these topics, this book is ideal for both the researcher and the student. Although the emphasis of this text is on compound semiconductor devices, many of the principles discussed will also be useful to those interested in silicon devices. Each chapter ends with exercises that have been designed to reinforce concepts, to complement arguments or derivations, and to emphasize the nature of approximations by critically evaluating realistic conditions.One of the most rigorous treatments of compound semiconductor device physics yet published**Essential reading for a complete understanding of modern devices**Includes chapter-ending exercises to facilitate understanding
Author | : S. M. Sze |
Publisher | : |
Total Pages | : 582 |
Release | : 2013 |
Genre | : |
ISBN | : 9788126556755 |