Modeling Populations of Adaptive Individuals

Modeling Populations of Adaptive Individuals
Author: Steven F. Railsback
Publisher: Princeton University Press
Total Pages: 195
Release: 2020-05-19
Genre: Science
ISBN: 0691195374

Ecologists now recognize that the dynamics of populations, communities, and ecosystems are strongly affected by adaptive individual behaviors. Yet until now, we have lacked effective and flexible methods for modeling such dynamics. Traditional ecological models become impractical with the inclusion of behavior, and the optimization approaches of behavioral ecology cannot be used when future conditions are unpredictable due to feedbacks from the behavior of other individuals. This book provides a comprehensive introduction to state- and prediction-based theory, or SPT, a powerful new approach to modeling trade-off behaviors in contexts such as individual-based population models where feedbacks and variability make optimization impossible. Modeling Populations of Adaptive Individuals features a wealth of examples that range from highly simplified behavior models to complex population models in which individuals make adaptive trade-off decisions about habitat and activity selection in highly heterogeneous environments. Steven Railsback and Bret Harvey explain how SPT builds on key concepts from the state-based dynamic modeling theory of behavioral ecology, and how it combines explicit predictions of future conditions with approximations of a fitness measure to represent how individuals make good—not optimal—decisions that they revise as conditions change. The resulting models are realistic, testable, adaptable, and invaluable for answering fundamental questions in ecology and forecasting ecological outcomes of real-world scenarios.

Modeling Populations of Adaptive Individuals

Modeling Populations of Adaptive Individuals
Author: Steven F. Railsback
Publisher: Princeton University Press
Total Pages: 195
Release: 2020-05-19
Genre: Science
ISBN: 0691180490

"This book offers a new theory for modeling how organisms make tradeoff decisions and how these decisions affect both individuals and populations. Tradeoff decisions (or behaviors) are those that are optimize survival and include behaviors like foraging and reproduction. Existing theories have not painted a complete picture of tradeoff decisions because they only observe how the decisions of an individual affect them rather than how individuals impact, and are impacted by, the behavior of their communities. The authors' theory-which they call state and prediction based theory-uses individual-based models since these models show the complex ways that organisms relate to their environment. The authors' broader approach, one that integrates behavior and population dynamics, allows ecologists to see how individuals make adaptive tradeoff decisions. In simpler terms, this theory does not assume, as the previous models do, that future conditions are fixed, known, and unaffected by the behavior of others. Instead, the authors assume individuals make decisions like people do, which is by forecasting future conditions, using approximation to make good decisions, and updating their choices as conditions change"--

Adaptive Individuals In Evolving Populations

Adaptive Individuals In Evolving Populations
Author: Richard K. Belew
Publisher: Routledge
Total Pages: 552
Release: 2018-05-04
Genre: Social Science
ISBN: 0429971451

This book is out of a workshop organized to address questions like these. The meeting was sponsored by the Santa Fe Institute and held at Sol y Sam- bra in Santa Fe, New Mexico, during July, 1993. It brought together a group of about 20 scientists from the disciplines of biology, psychology, and computer science, all studying interactions between the evolution of populations and individuals’ adaptations in those populations, and all of whom make some use of computational tools in their work.

Individual-based Modeling and Ecology

Individual-based Modeling and Ecology
Author: Volker Grimm
Publisher: Princeton University Press
Total Pages: 445
Release: 2013-11-28
Genre: Science
ISBN: 1400850622

Individual-based models are an exciting and widely used new tool for ecology. These computational models allow scientists to explore the mechanisms through which population and ecosystem ecology arises from how individuals interact with each other and their environment. This book provides the first in-depth treatment of individual-based modeling and its use to develop theoretical understanding of how ecological systems work, an approach the authors call "individual-based ecology.? Grimm and Railsback start with a general primer on modeling: how to design models that are as simple as possible while still allowing specific problems to be solved, and how to move efficiently through a cycle of pattern-oriented model design, implementation, and analysis. Next, they address the problems of theory and conceptual framework for individual-based ecology: What is "theory"? That is, how do we develop reusable models of how system dynamics arise from characteristics of individuals? What conceptual framework do we use when the classical differential equation framework no longer applies? An extensive review illustrates the ecological problems that have been addressed with individual-based models. The authors then identify how the mechanics of building and using individual-based models differ from those of traditional science, and provide guidance on formulating, programming, and analyzing models. This book will be helpful to ecologists interested in modeling, and to other scientists interested in agent-based modeling.

Adaptive Diversification

Adaptive Diversification
Author: Michael Doebeli
Publisher: Princeton University Press
Total Pages: 346
Release: 2011-08-01
Genre: Science
ISBN: 1400838932

Understanding the mechanisms driving biological diversity remains a central problem in ecology and evolutionary biology. Traditional explanations assume that differences in selection pressures lead to different adaptations in geographically separated locations. This book takes a different approach and explores adaptive diversification--diversification rooted in ecological interactions and frequency-dependent selection. In any ecosystem, birth and death rates of individuals are affected by interactions with other individuals. What is an advantageous phenotype therefore depends on the phenotype of other individuals, and it may often be best to be ecologically different from the majority phenotype. Such rare-type advantage is a hallmark of frequency-dependent selection and opens the scope for processes of diversification that require ecological contact rather than geographical isolation. Michael Doebeli investigates adaptive diversification using the mathematical framework of adaptive dynamics. Evolutionary branching is a paradigmatic feature of adaptive dynamics that serves as a basic metaphor for adaptive diversification, and Doebeli explores the scope of evolutionary branching in many different ecological scenarios, including models of coevolution, cooperation, and cultural evolution. He also uses alternative modeling approaches. Stochastic, individual-based models are particularly useful for studying adaptive speciation in sexual populations, and partial differential equation models confirm the pervasiveness of adaptive diversification. Showing that frequency-dependent interactions are an important driver of biological diversity, Adaptive Diversification provides a comprehensive theoretical treatment of adaptive diversification.

Integrated Population Models

Integrated Population Models
Author: Michael Schaub
Publisher: Academic Press
Total Pages: 640
Release: 2021-11-12
Genre: Science
ISBN: 0128209151

Integrated Population Models: Theory and Ecological Applications with R and JAGS is the first book on integrated population models, which constitute a powerful framework for combining multiple data sets from the population and the individual levels to estimate demographic parameters, and population size and trends. These models identify drivers of population dynamics and forecast the composition and trajectory of a population. Written by two population ecologists with expertise on integrated population modeling, this book provides a comprehensive synthesis of the relevant theory of integrated population models with an extensive overview of practical applications, using Bayesian methods by means of case studies. The book contains fully-documented, complete code for fitting all models in the free software, R and JAGS. It also includes all required code for pre- and post-model-fitting analysis. Integrated Population Models is an invaluable reference for researchers and practitioners involved in population analysis, and for graduate-level students in ecology, conservation biology, wildlife management, and related fields. The text is ideal for self-study and advanced graduate-level courses. - Offers practical and accessible ecological applications of IPMs (integrated population models) - Provides full documentation of analyzed code in the Bayesian framework - Written and structured for an easy approach to the subject, especially for non-statisticians

Mixed Effects Models for the Population Approach

Mixed Effects Models for the Population Approach
Author: Marc Lavielle
Publisher: CRC Press
Total Pages: 380
Release: 2014-07-14
Genre: Mathematics
ISBN: 1482226510

Wide-Ranging Coverage of Parametric Modeling in Linear and Nonlinear Mixed Effects ModelsMixed Effects Models for the Population Approach: Models, Tasks, Methods and Tools presents a rigorous framework for describing, implementing, and using mixed effects models. With these models, readers can perform parameter estimation and modeling across a whol

Agent-Based Computational Modelling

Agent-Based Computational Modelling
Author: Francesco C. Billari
Publisher: Taylor & Francis
Total Pages: 684
Release: 2006-03-13
Genre: Business & Economics
ISBN: 9783790816402

The present book describes the methodology to set up agent-based models and to study emerging patterns in complex adaptive systems resulting from multi-agent interaction. It offers the application of agent-based models in demography, social and economic sciences and environmental sciences. Examples include population dynamics, evolution of social norms, communication structures, patterns in eco-systems and socio-biology, natural resource management, spread of diseases and development processes. It presents and combines different approaches how to implement agent-based computational models and tools in an integrative manner that can be extended to other cases.

Using Science to Improve the BLM Wild Horse and Burro Program

Using Science to Improve the BLM Wild Horse and Burro Program
Author: National Research Council
Publisher: National Academies Press
Total Pages: 399
Release: 2013-10-04
Genre: Technology & Engineering
ISBN: 0309264944

Using Science to Improve the BLM Wild Horse and Burro Program: A Way Forward reviews the science that underpins the Bureau of Land Management's oversight of free-ranging horses and burros on federal public lands in the western United States, concluding that constructive changes could be implemented. The Wild Horse and Burro Program has not used scientifically rigorous methods to estimate the population sizes of horses and burros, to model the effects of management actions on the animals, or to assess the availability and use of forage on rangelands. Evidence suggests that horse populations are growing by 15 to 20 percent each year, a level that is unsustainable for maintaining healthy horse populations as well as healthy ecosystems. Promising fertility-control methods are available to help limit this population growth, however. In addition, science-based methods exist for improving population estimates, predicting the effects of management practices in order to maintain genetically diverse, healthy populations, and estimating the productivity of rangelands. Greater transparency in how science-based methods are used to inform management decisions may help increase public confidence in the Wild Horse and Burro Program.

The Theory of Ecological Communities (MPB-57)

The Theory of Ecological Communities (MPB-57)
Author: Mark Vellend
Publisher: Princeton University Press
Total Pages: 246
Release: 2020-09-15
Genre: Science
ISBN: 0691208999

A plethora of different theories, models, and concepts make up the field of community ecology. Amid this vast body of work, is it possible to build one general theory of ecological communities? What other scientific areas might serve as a guiding framework? As it turns out, the core focus of community ecology—understanding patterns of diversity and composition of biological variants across space and time—is shared by evolutionary biology and its very coherent conceptual framework, population genetics theory. The Theory of Ecological Communities takes this as a starting point to pull together community ecology's various perspectives into a more unified whole. Mark Vellend builds a theory of ecological communities based on four overarching processes: selection among species, drift, dispersal, and speciation. These are analogues of the four central processes in population genetics theory—selection within species, drift, gene flow, and mutation—and together they subsume almost all of the many dozens of more specific models built to describe the dynamics of communities of interacting species. The result is a theory that allows the effects of many low-level processes, such as competition, facilitation, predation, disturbance, stress, succession, colonization, and local extinction to be understood as the underpinnings of high-level processes with widely applicable consequences for ecological communities. Reframing the numerous existing ideas in community ecology, The Theory of Ecological Communities provides a new way for thinking about biological composition and diversity.