Modeling Of Random Heterogeneous Materials
Download Modeling Of Random Heterogeneous Materials full books in PDF, epub, and Kindle. Read online free Modeling Of Random Heterogeneous Materials ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Salvatore Torquato |
Publisher | : Springer Science & Business Media |
Total Pages | : 720 |
Release | : 2013-04-17 |
Genre | : Mathematics |
ISBN | : 1475763557 |
This accessible text presents a unified approach of treating the microstructure and effective properties of heterogeneous media. Part I deals with the quantitative characterization of the microstructure of heterogeneous via theoretical methods; Part II treats a wide variety of effective properties of heterogeneous materials and how they are linked to the microstructure, accomplished by using rigorous methods.
Author | : Valeriy Buryachenko |
Publisher | : Springer Science & Business Media |
Total Pages | : 704 |
Release | : 2007-09-20 |
Genre | : Science |
ISBN | : 0387684859 |
Here is an accurate and timely account of micromechanics, which spans materials science, mechanical engineering, applied mathematics, technical physics, geophysics, and biology. The book features rigorous and unified theoretical methods of applied mathematics and statistical physics in the material science of microheterogeneous media. Uniquely, it offers a useful demonstration of the systematic and fundamental research of the microstructure of the wide class of heterogeneous materials of natural and synthetic nature.
Author | : Mark Kachanov |
Publisher | : Springer Science & Business Media |
Total Pages | : 393 |
Release | : 2013-01-21 |
Genre | : Science |
ISBN | : 9400757158 |
The book contains state-of the-art reviews in the area of effective properties of heterogeneous materials - the classical field at interface of materials science and solid mechanics. The primary focus is on thermo-mechanical properties, materials science applications, as well as computational aspects and new opportunities provided by rapidly increasing computer powers. The reviews are at the level that is appropriate for a substantial community of researchers working in this field, both at universities and in the industry, and to graduate students. The book can be used as supplementary reading to graduate level courses.
Author | : Valeriy A. Buryachenko |
Publisher | : Springer Nature |
Total Pages | : 1012 |
Release | : 2021-11-16 |
Genre | : Technology & Engineering |
ISBN | : 3030817849 |
This book presents the micromechanics of random structure heterogeneous materials, a multidisciplinary research area that has experienced a revolutionary renascence at the overlap of various branches of materials science, mechanical engineering, applied mathematics, technical physics, geophysics, and biology. It demonstrates intriguing successes of unified rigorous theoretical methods of applied mathematics and statistical physics in material science of microheterogeneous media. The prediction of the behaviour of heterogeneous materials by the use of properties of constituents and their microstructure is a central problem of micromechanics. This book is the first in micromechanics where a successful effort of systematic and fundamental research of the microstructure of the wide class of heterogeneous materials of natural and synthetic nature is attempted. The uniqueness of the book lies in its development and expressive representation of statistical methods quantitatively describing random structures which are at most adopted for the forthcoming evaluation of a wide variety of macroscopic transport, electromagnetic, strength, and elastoplastic properties of heterogeneous materials.
Author | : Dominique Jeulin |
Publisher | : Springer Nature |
Total Pages | : 919 |
Release | : 2021-06-01 |
Genre | : Mathematics |
ISBN | : 3030754529 |
This book covers methods of Mathematical Morphology to model and simulate random sets and functions (scalar and multivariate). The introduced models concern many physical situations in heterogeneous media, where a probabilistic approach is required, like fracture statistics of materials, scaling up of permeability in porous media, electron microscopy images (including multispectral images), rough surfaces, multi-component composites, biological tissues, textures for image coding and synthesis. The common feature of these random structures is their domain of definition in n dimensions, requiring more general models than standard Stochastic Processes.The main topics of the book cover an introduction to the theory of random sets, random space tessellations, Boolean random sets and functions, space-time random sets and functions (Dead Leaves, Sequential Alternate models, Reaction-Diffusion), prediction of effective properties of random media, and probabilistic fracture theories.
Author | : Ulrich Hornung |
Publisher | : Springer Science & Business Media |
Total Pages | : 290 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461219205 |
This book offers a systematic, rigorous treatment of upscaling procedures related to physical modeling for porous media on micro-, meso- and macro-scales, including detailed studies of micro-structure systems and computational results for dual-porosity models.
Author | : Sidney Yip |
Publisher | : Springer Science & Business Media |
Total Pages | : 2903 |
Release | : 2007-11-17 |
Genre | : Science |
ISBN | : 1402032862 |
The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.
Author | : Manolis Papadrakakis |
Publisher | : Springer |
Total Pages | : 303 |
Release | : 2014-07-02 |
Genre | : Science |
ISBN | : 3319063316 |
This book contains the proceedings of the IUTAM Symposium on Multiscale Modeling and Uncertainty Quantification of Materials and Structures that was held at Santorini, Greece, September 9 – 11, 2013. It consists of 20 chapters which are divided in five thematic topics: Damage and fracture, homogenization, inverse problems–identification, multiscale stochastic mechanics and stochastic dynamics. Over the last few years, the intense research activity at micro scale and nano scale reflected the need to account for disparate levels of uncertainty from various sources and across scales. As even over-refined deterministic approaches are not able to account for this issue, an efficient blending of stochastic and multiscale methodologies is required to provide a rational framework for the analysis and design of materials and structures. The purpose of this IUTAM Symposium was to promote achievements in uncertainty quantification combined with multiscale modeling and to encourage research and development in this growing field with the aim of improving the safety and reliability of engineered materials and structures. Special emphasis was placed on multiscale material modeling and simulation as well as on the multiscale analysis and uncertainty quantification of fracture mechanics of heterogeneous media. The homogenization of two-phase random media was also thoroughly examined in several presentations. Various topics of multiscale stochastic mechanics, such as identification of material models, scale coupling, modeling of random microstructures, analysis of CNT-reinforced composites and stochastic finite elements, have been analyzed and discussed. A large number of papers were finally devoted to innovative methods in stochastic dynamics.
Author | : Michel Bilodeau |
Publisher | : Springer Science & Business Media |
Total Pages | : 402 |
Release | : 2007-12-23 |
Genre | : Mathematics |
ISBN | : 0387291156 |
Space, structure, and randomness: these are the three key concepts underlying Georges Matheron’s scientific work. He first encountered them at the beginning of his career when working as a mining engineer, and then they resurfaced in fields ranging from meteorology to microscopy. What could these radically different types of applications possibly have in common? First, in each one only a single realisation of the phenomenon is available for study, but its features repeat themselves in space; second, the sampling pattern is rarely regular, and finally there are problems of change of scale. This volume is divided in three sections on random sets, geostatistics and mathematical morphology. They reflect his professional interests and his search for underlying unity. Some readers may be surprised to find theoretical chapters mixed with applied ones. We have done this deliberately. GM always considered that the distinction between the theory and practice was purely academic. When GM tackled practical problems, he used his skill as a physicist to extract the salient features and to select variables which could be measured meaningfully and whose values could be estimated from the available data. Then he used his outstanding ability as a mathematician to solve the problems neatly and efficiently. It was his capacity to combine a physicist’s intuition with a mathematician’s analytical skills that allowed him to produce new and innovative solutions to difficult problems. The book should appeal to graduate students and researchers working in mathematics, probability, statistics, physics, spatial data analysis, and image analysis. In addition it will be of interest to those who enjoy discovering links between scientific disciplines that seem unrelated at first glance. In writing the book the contributors have tried to put GM’s ideas into perspective. During his working life, GM was a genuinely creative scientist. He developed innovative concepts whose usefulness goes far beyond the confines of the discipline for which they were originally designed. This is why his work remains as pertinent today as it was when it was first written.
Author | : Majid Baniassadi |
Publisher | : Elsevier |
Total Pages | : 453 |
Release | : 2023-03-02 |
Genre | : Technology & Engineering |
ISBN | : 0443189927 |
Applied Micromechanics of Complex Microstructures explains the fundamental concepts of continuum modeling of various complicated microstructures, covering nanocomposites, multiphase composites, biomaterials, biological materials, and more. The authors outline the calculation of effective mechanical and thermal properties, allowing readers to understand the step-by-step modeling and homogenization of complicated microstructures, and the book also features a chapter on microstructure hull and material design. Modeling of complex samples with nonlinear properties such as neural tissue, bone microstructure, and liver tissue is also explained and analyzed. Explains the core concepts of continuum modeling of different complex microstructures, including nanocomposites, multiphase composites, biomaterials, and biological materials Provides detailed calculations of eff ective mechanical and thermal properties allowing the audience to understand the modeling and homogenization of complex microstructures Covers several methods for designing the microstructure of heterogeneous materials