Aircraft and Rotorcraft System Identification

Aircraft and Rotorcraft System Identification
Author: Mark Brian Tischler
Publisher: AIAA Education
Total Pages: 0
Release: 2012
Genre: Technology & Engineering
ISBN: 9781600868207

Although many books have been written on the theory of system identification, few are available that provide a complete engineering treatment of system identification and how to successfully apply it to flight vehicles. This book presents proven methods, practical guidelines, and real-world flight-test results for a wide range of state-of-the-art flight vehicles, from small uncrewed aerial vehicles (UAVs) to large manned aircraft/rotorcraft.

Modeling Flexible Aircraft for Flight Control Design

Modeling Flexible Aircraft for Flight Control Design
Author: E. C. Bekir
Publisher:
Total Pages: 438
Release: 1989
Genre: Aerodynamic load
ISBN:

Trends to lower structural fraction of aircraft increase flexibility effects. Higher bandwidth control systems combined with these more flexible structures cause more aeroservoelastic interactions. Active, closed-loop control systems allow greater flexibility. To take advantage of this design possibility, an integrated ASE model is needed for conceptual and preliminary design stages of aircraft. This report seeks to define the equations of motion of a flexible aircraft from first principles to aid future discussions between experts in the specialties which make up ASE: aerodynamics, controls, and structures. This theoretical report documents the development of the equations, and states under what conditions the assumptions and approximations are accurate. It consists of 5 sections on different technical areas and a summary section: 1) Linearization of flexible aircraft hybrid-coordinate dynamic equations and inclusion of aerodynamic and gravitational loads; 2) Derivation of equations of motion and stability derivatives for a flexible aircraft vehicle; 3) Aerodynamics for aeroservoelasticity; 4) Model-order reduction for linear systems; and 5) Hydraulic actuator equations for aeroservoelastic modeling. Flight control systems; Servomechanisms. (edc).

Flight Vehicle System Identification

Flight Vehicle System Identification
Author: Ravindra V. Jategaonkar
Publisher: AIAA (American Institute of Aeronautics & Astronautics)
Total Pages: 568
Release: 2006
Genre: Science
ISBN:

This valuable volume offers a systematic approach to flight vehicle system identification and exhaustively covers the time domain methodology. It addresses in detail the theoretical and practical aspects of various parameter estimation methods, including those in the stochastic framework and focusing on nonlinear models, cost functions, optimization methods, and residual analysis. A pragmatic and balanced account of pros and cons in each case is provided. The book also presents data gathering and model validation, and covers both large-scale systems and high-fidelity modeling. Real world problems dealing with a variety of flight vehicle applications are addressed and solutions are provided. Examples encompass such problems as estimation of aerodynamics, stability, and control derivatives from flight data, flight path reconstruction, nonlinearities in control surface effectiveness, stall hysteresis, unstable aircraft, and other critical considerations.

Nonlinear Optimal Model Following Control of Flexible Aircraft

Nonlinear Optimal Model Following Control of Flexible Aircraft
Author: André Luís da Silva
Publisher: LAP Lambert Academic Publishing
Total Pages: 216
Release: 2012
Genre:
ISBN: 9783659300417

Every aircraft is a flexible body and its motion should be evaluated by the continuum mechanics. However, in the flight mechanics, they are commonly treated as rigid. In other way, in the structural dynamics scenario, rigid body modes are usually neglected. Such segregation is acceptable when sufficient separation exist between the frequencies of rigid and flexible modes. But, trends in the aircraft industry are leading to longer fuselages, larger aspect ratios, smaller thicknesses and the use of composite materials. Such configurations are more flexible and integrated models for flight mechanics and structural dynamics should be taken. This book develops the theme in a scenario of modelling, simulation and optimal control. Models of conceptual flexible aircraft are built in order to be used in control studies. A nonlinear optimal model following control is proposed. Linear solutions are developed, nonlinear approaches are also investigated, via neural networks. The technique is used to approximate the flexible aircraft as a rigid body, letting the job of controlling flexible modes to the automatic control, while an human or autopilot can see the aircraft as a usual rigid body.

Flight Dynamics, Simulation, and Control

Flight Dynamics, Simulation, and Control
Author: Ranjan Vepa
Publisher: CRC Press
Total Pages: 643
Release: 2023-04-11
Genre: Technology & Engineering
ISBN: 1000848019

Flight Dynamics, Simulation, and Control of Aircraft: For Rigid and Flexible Aircraft explains the basics of non-linear aircraft dynamics and the principles of control-configured aircraft design, as applied to rigid and flexible aircraft, drones, and unmanned aerial vehicles (UAVs). Addressing the details of dynamic modeling, simulation, and control in a selection of aircraft, the book explores key concepts associated with control-configured elastic aircraft. It also covers the conventional dynamics of rigid aircraft and examines the use of linear and non-linear model-based techniques and their applications to flight control. This second edition features a new chapter on the dynamics and control principles of drones and UAVs, aiding in the design of newer aircraft with a combination of propulsive and aerodynamic control surfaces. In addition, the book includes new sections, approximately 20 problems per chapter, examples, simulator exercises, and case studies to enhance and reinforce student understanding. The book is intended for senior undergraduate and graduate mechanical and aerospace engineering students taking Flight Dynamics and Flight Control courses. Instructors will be able to utilize an updated Solutions Manual and figure slides for their course.

Modeling Flexible Aircraft for Flight Control Design

Modeling Flexible Aircraft for Flight Control Design
Author:
Publisher:
Total Pages: 0
Release: 1989
Genre:
ISBN:

Trends to lower structural fraction of aircraft increase flexibility effects. Higher bandwidth control systems combined with these more flexible structures cause more aeroservoelastic interactions. Active, closed-loop control systems allow greater flexibility. To take advantage of this design possibility, an integrated ASE model is needed for conceptual and preliminary design stages of aircraft. This report seeks to define the equations of motion of a flexible aircraft from first principles to aid future discussions between experts in the specialties which make up ASE: aerodynamics, controls, and structures. This theoretical report documents the development of the equations, and states under what conditions the assumptions and approximations are accurate. It consists of 5 sections on different technical areas and a summary section: 1) Linearization of flexible aircraft hybrid-coordinate dynamic equations and inclusion of aerodynamic and gravitational loads; 2) Derivation of equations of motion and stability derivatives for a flexible aircraft vehicle; 3) Aerodynamics for aeroservoelasticity; 4) Model-order reduction for linear systems; and 5) Hydraulic actuator equations for aeroservoelastic modeling. Flight control systems; Servomechanisms. (edc).

Modeling and Control for a Blended Wing Body Aircraft

Modeling and Control for a Blended Wing Body Aircraft
Author: Martin Kozek
Publisher: Springer
Total Pages: 308
Release: 2014-10-27
Genre: Technology & Engineering
ISBN: 3319107925

This book demonstrates the potential of the blended wing body (BWB) concept for significant improvement in both fuel efficiency and noise reduction and addresses the considerable challenges raised for control engineers because of characteristics like open-loop instability, large flexible structure, and slow control surfaces. This text describes state-of-the-art and novel modeling and control design approaches for the BWB aircraft under consideration. The expert contributors demonstrate how exceptional robust control performance can be achieved despite such stringent design constraints as guaranteed handling qualities, reduced vibration, and the minimization of the aircraft’s structural loads during maneuvers and caused by turbulence. As a result, this innovative approach allows the building of even lighter aircraft structures, and thus results in considerable efficiency improvements per passenger kilometer. The treatment of this large, complex, parameter-dependent industrial control problem highlights relevant design issues and provides a relevant case study for modeling and control engineers in many adjacent disciplines and applications. Modeling and Control for a Blended Wing Body Aircraft presents research results in numeric modeling and control design for a large, flexible, civil BWB aircraft in the pre-design stage as developed within the EU FP7 research project ACFA 2020. It is a useful resource for aerospace and control engineers as it shows the complete BWB aircraft modeling and control design process, carried out with the most recent tools and techniques available. presents research results in numeric modeling and control design for a large, flexible, civil BWB aircraft in the pre-design stage as developed within the EU FP7 research project ACFA 2020. It is a useful resource for aerospace and control engineers as it shows the complete BWB aircraft modeling and control design process, carried out with the most recent tools and techniques available. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.