Modeling Field Scale Unsaturated Flow And Transport Processes
Download Modeling Field Scale Unsaturated Flow And Transport Processes full books in PDF, epub, and Kindle. Read online free Modeling Field Scale Unsaturated Flow And Transport Processes ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Committee on Fracture Characterization and Fluid Flow |
Publisher | : National Academies Press |
Total Pages | : 568 |
Release | : 1996-09-10 |
Genre | : Science |
ISBN | : 0309563488 |
Scientific understanding of fluid flow in rock fractures--a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storage--has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.
Author | : National Research Council |
Publisher | : National Academies Press |
Total Pages | : 398 |
Release | : 2001-05-21 |
Genre | : Science |
ISBN | : 0309170990 |
Fluid flow and solute transport within the vadose zone, the unsaturated zone between the land surface and the water table, can be the cause of expanded plumes arising from localized contaminant sources. An understanding of vadose zone processes is, therefore, an essential prerequisite for cost-effective contaminant remediation efforts. In addition, because such features are potential avenues for rapid transport of chemicals from contamination sources to the water table, the presence of fractures and other channel-like openings in the vadose zone poses a particularly significant problem, Conceptual Models of Flow and Transport in the Fractured Vadose Zone is based on the work of a panel established under the auspices of the U.S. National Committee for Rock Mechanics. It emphasizes the importance of conceptual models and goes on to review the conceptual model development, testing, and refinement processes. The book examines fluid flow and transport mechanisms, noting the difficulty of modeling solute transport, and identifies geochemical and environmental tracer data as important components of the modeling process. Finally, the book recommends several areas for continued research.
Author | : Adam Szymkiewicz |
Publisher | : Springer Science & Business Media |
Total Pages | : 254 |
Release | : 2012-10-11 |
Genre | : Science |
ISBN | : 364223559X |
The book focuses on two issues related to mathematical and numerical modelling of flow in unsaturated porous media. In the first part numerical solution of the governing equations is discussed, with particular emphasis on the spatial discretization of highly nonlinear permeability coefficient. The second part deals with large scale flow in heterogeneous porous media of binary structure. Upscaled models are developed and it is shown that the presence of material heterogeneities may give rise to additional non-equilibrium terms in the governing equations or to hysteresis in the averaged constitutive relationships.
Author | : Yakov Pachepsky |
Publisher | : CRC Press |
Total Pages | : 470 |
Release | : 2003-03-26 |
Genre | : Science |
ISBN | : 0203011066 |
The scaling issue remains one of the largest problems in soil science and hydrology. This book is a unique compendium of ideas, conceptual approaches, techniques, and methodologies for scaling soil physical properties. Scaling Methods in Soil Physics covers many methods of scaling that will be useful in helping scientists across a range of soil-rel
Author | : Akio Ogata |
Publisher | : |
Total Pages | : 16 |
Release | : 1961 |
Genre | : Diffusion in hydrology |
ISBN | : |
Author | : R.A. Feddes |
Publisher | : Springer Science & Business Media |
Total Pages | : 392 |
Release | : 2004-10-11 |
Genre | : Science |
ISBN | : 9781402029189 |
Mankind has manipulated the quantity and quality of soil water for millennia. Food production was massively increased through fertilization, irrigation and drainage. But malpractice also caused degradation of immense areas of once fertile land, rendering it totally unproductive for many generations. In populated areas, the pollutant load ever more often exceeds the soil’s capacity for buffering and retention, and large volumes of potable groundwater have been polluted or are threatened to be polluted in the foreseeable future. In the past decades, the role of soil water in climate patterns has been recognized but not yet fully understood. The soil-science community responded to this diversity of issues by developing numerical models to simulate the behavior of water and solutes in soils. These models helped improve our understanding of unsaturated-zone processes and develop sustainable land-management practices. Aimed at professional soil scientists, soil-water modelers, irrigation engineers etc., this book discusses our progress in soil-water modeling. Top scientists present case studies, overviews and analyses of strengths, weaknesses, opportunities and threats related to soil-water modeling. The contributions cover a wide range of spatial scales, and discuss fundamental aspects of unsaturated-zone modeling as well as issues related to the application of models to real-world problems.
Author | : National Academies of Sciences, Engineering, and Medicine |
Publisher | : National Academies Press |
Total Pages | : 177 |
Release | : 2021-01-29 |
Genre | : Science |
ISBN | : 0309373727 |
Fractured rock is the host or foundation for innumerable engineered structures related to energy, water, waste, and transportation. Characterizing, modeling, and monitoring fractured rock sites is critical to the functioning of those infrastructure, as well as to optimizing resource recovery and contaminant management. Characterization, Modeling, Monitoring, and Remediation of Fractured Rock examines the state of practice and state of art in the characterization of fractured rock and the chemical and biological processes related to subsurface contaminant fate and transport. This report examines new developments, knowledge, and approaches to engineering at fractured rock sites since the publication of the 1996 National Research Council report Rock Fractures and Fluid Flow: Contemporary Understanding and Fluid Flow. Fundamental understanding of the physical nature of fractured rock has changed little since 1996, but many new characterization tools have been developed, and there is now greater appreciation for the importance of chemical and biological processes that can occur in the fractured rock environment. The findings of Characterization, Modeling, Monitoring, and Remediation of Fractured Rock can be applied to all types of engineered infrastructure, but especially to engineered repositories for buried or stored waste and to fractured rock sites that have been contaminated as a result of past disposal or other practices. The recommendations of this report are intended to help the practitioner, researcher, and decision maker take a more interdisciplinary approach to engineering in the fractured rock environment. This report describes how existing tools-some only recently developed-can be used to increase the accuracy and reliability of engineering design and management given the interacting forces of nature. With an interdisciplinary approach, it is possible to conceptualize and model the fractured rock environment with acceptable levels of uncertainty and reliability, and to design systems that maximize remediation and long-term performance. Better scientific understanding could inform regulations, policies, and implementation guidelines related to infrastructure development and operations. The recommendations for research and applications to enhance practice of this book make it a valuable resource for students and practitioners in this field.
Author | : Gedeon Dagan |
Publisher | : Springer Science & Business Media |
Total Pages | : 293 |
Release | : 2013-06-29 |
Genre | : Science |
ISBN | : 9401721998 |
The main aim of this paper is to present some new and general results, ap plicable to the the equations of two phase flow, as formulated in geothermal reservoir engineering. Two phase regions are important in many geothermal reservoirs, especially at depths of order several hundred metres, where ris ing, essentially isothermal single phase liquid first begins to boil. The fluid then continues to rise, with its temperature and pressure closely following the saturation (boiling) curve appropriate to the fluid composition. Perhaps the two most interesting theoretical aspects of the (idealised) two phase flow equations in geothermal reservoir engineering are that firstly, only one component (water) is involved; and secondly, that the densities of the two phases are so different. This has led to the approximation of ignoring capillary pressure. The main aim of this paper is to analyse some of the consequences of this assumption, especially in relation to saturation changes within a uniform porous medium. A general analytic treatment of three dimensional flow is considered. Pre viously, three dimensional modelling in geothermal reservoirs have relied on numerical simulators. In contrast, most of the past analytic work has been restricted to one dimensional examples.
Author | : John S. Selker |
Publisher | : CRC Press |
Total Pages | : 356 |
Release | : 1999-06-28 |
Genre | : Technology & Engineering |
ISBN | : 9780873719537 |
Vadose Zone Processes provides a unified, up-to-date treatment on the movement of water through unsaturated media. In addition to covering the basic equations governing the flow and fate of water in unsaturated media, the text covers the biogeochemistry of vadose environments and the statistical description of vadose processes. The authors emphasize maintaining an intuitive understanding of how the results are derived and how they are appropriately applied. This comprehensive and important book will be useful not only to those in traditional fields such as civil engineering, geology, crop science, chemical engineering, agricultural engineering, and hydrology but also in the newer environmental engineering fields including containment transport, pollution remediation, and waste disposal.
Author | : Hans-Jörg G. Diersch |
Publisher | : Springer Science & Business Media |
Total Pages | : 1018 |
Release | : 2013-11-22 |
Genre | : Science |
ISBN | : 364238739X |
FEFLOW is an acronym of Finite Element subsurface FLOW simulation system and solves the governing flow, mass and heat transport equations in porous and fractured media by a multidimensional finite element method for complex geometric and parametric situations including variable fluid density, variable saturation, free surface(s), multispecies reaction kinetics, non-isothermal flow and multidiffusive effects. FEFLOW comprises theoretical work, modeling experiences and simulation practice from a period of about 40 years. In this light, the main objective of the present book is to share this achieved level of modeling with all required details of the physical and numerical background with the reader. The book is intended to put advanced theoretical and numerical methods into the hands of modeling practitioners and scientists. It starts with a more general theory for all relevant flow and transport phenomena on the basis of the continuum approach, systematically develops the basic framework for important classes of problems (e.g., multiphase/multispecies non-isothermal flow and transport phenomena, discrete features, aquifer-averaged equations, geothermal processes), introduces finite-element techniques for solving the basic balance equations, in detail discusses advanced numerical algorithms for the resulting nonlinear and linear problems and completes with a number of benchmarks, applications and exercises to illustrate the different types of problems and ways to tackle them successfully (e.g., flow and seepage problems, unsaturated-saturated flow, advective-diffusion transport, saltwater intrusion, geothermal and thermohaline flow).