Modeling And Simulation Of Nanofluid Flow Problems
Download Modeling And Simulation Of Nanofluid Flow Problems full books in PDF, epub, and Kindle. Read online free Modeling And Simulation Of Nanofluid Flow Problems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Snehashish Chakraverty |
Publisher | : Springer Nature |
Total Pages | : 76 |
Release | : 2022-05-31 |
Genre | : Technology & Engineering |
ISBN | : 3031796578 |
In general, nanofluid is suspension of nanometer-sized particle in base fluids such as water, oil, ethylene glycol mixture etc. Nanofluid has more thermal conductivity compared to the base fluids. As such, the nanofluid has more heat transfer capacity than the base fluids. In order to study nanofluid flow problems, we need to solve related nonlinear differential equations analytically or numerically. But in most cases, we may not get an analytical solution. Accordingly, the related nonlinear differential equations need to be solved by efficient numerical methods. Accordingly, this book addresses various challenging problems related to nanofluid flow. In this regard, different efficient numerical methods such as homotopy perturbation method, Galerkin's method, and least square method are included. Further, the above practical problems are validated in special cases. We believe that this book will be very beneficial for readers who want firsthand knowledge on how to solve nanofluid flow problems.
Author | : Snehashish Chakraverty |
Publisher | : Morgan & Claypool Publishers |
Total Pages | : 92 |
Release | : 2020-03-20 |
Genre | : Technology & Engineering |
ISBN | : 1681737566 |
Linked Data (LD) is a well-established standard for publishing and managing structured information on the Web, gathering and bridging together knowledge from different scientific and commercial domains. The development of Linked Data Visualization techniques and tools has been followed as the primary means for the analysis of this vast amount of information by data scientists, domain experts, business users, and citizens. This book covers a wide spectrum of visualization issues, providing an overview of the recent advances in this area, focusing on techniques, tools, and use cases of visualization and visual analysis of LD. It presents the basic concepts related to data visualization and the LD technologies, the techniques employed for data visualization based on the characteristics of data techniques for Big Data visualization, use tools and use cases in the LD context, and finally a thorough assessment of the usability of these tools under different scenarios. The purpose of this book is to offer a complete guide to the evolution of LD visualization for interested readers from any background and to empower them to get started with the visual analysis of such data. This book can serve as a course textbook or a primer for all those interested in LD and data visualization.
Author | : Ramana Pidaparti |
Publisher | : Springer Nature |
Total Pages | : 81 |
Release | : 2022-05-31 |
Genre | : Technology & Engineering |
ISBN | : 3031796934 |
Capstone Design: Project Process and Reviews (Student Engineering Design Workbook) provides a brief overview of the design process as well as templates, tools, and student design notes. The goal of this workbook is to provide students in multiple disciplines with a systematic iterative process to follow in their Capstone Design projects and get feedback through design reviews. Students should treat this workbook as a working document and document individual/team decisions, make sketches of their concepts, and add additional design documentation. This workbook also assists in documenting student responsibility and accountability for individual contributions to the project. Freshman- and sophomore-level students may also find this workbook helpful for design projects. Finally, this workbook will also serve as an evaluation and assessment tool for the faculty mentor/advisor.
Author | : Mohsen Sheikholeslami |
Publisher | : Elsevier |
Total Pages | : 882 |
Release | : 2018-01-02 |
Genre | : Science |
ISBN | : 0128136766 |
Application of Semi-Analytical Methods for Nanofluid Flow and Heat Transfer applies semi-analytical methods to solve a range of engineering problems. After various methods are introduced, their application in nanofluid flow and heat transfer, magnetohydrodynamic flow, electrohydrodynamic flow and heat transfer, and nanofluid flow in porous media within several examples are explored. This is a valuable reference resource for materials scientists and engineers that will help familiarize them with a wide range of semi-analytical methods and how they are used in nanofluid flow and heat transfer. The book also includes case studies to illustrate how these methods are used in practice. - Presents detailed information, giving readers a complete familiarity with governing equations where nanofluid is used as working fluid - Provides the fundamentals of new analytical methods, applying them to applications of nanofluid flow and heat transfer in the presence of magnetic and electric field - Gives a detailed overview of nanofluid motion in porous media
Author | : Reshu Gupta |
Publisher | : CRC Press |
Total Pages | : 235 |
Release | : 2024-03-14 |
Genre | : Technology & Engineering |
ISBN | : 1003855660 |
In the rapidly advancing modern world, scientific and technological understanding and innovation are reaching new heights. Computational fluid dynamics and heat transfer have emerged as powerful tools, playing a pivotal role in the analysis and design of complex engineering problems and processes. With the ability to mathematically model various engineering phenomena, these computational tools offer a deeper understanding of intricate dynamics before the physical prototype is created. Widely employed as simulation tools, computational fluid dynamics and heat transfer codes enable the virtual or digital prototype development of products and devices involving complex transport and multiphasic phenomena. They have become an indispensable element of the agile product development environment across diverse sectors of manufacturing, facilitating accelerated product development cycles. Key features of this book: Covers the analysis of advanced thermal engineering systems Explores the simulation of various fluids with slip effect Applies entropy and optimization techniques to thermal engineering systems Discusses heat and mass transfer phenomena Explores fluid flow and heat transfer in porous media Captures recent developments in analytical and computational methods used to investigate the complex mathematical models of fluid dynamics Covers the application of mathematical and computational modeling techniques to fluid flow problems in various geometries Modeling and Simulation of Fluid Flow and Heat Transfer delves into the fascinating world of fluid dynamics and heat transfer modeling, presenting an extensive exploration of these subjects. This book is a valuable resource for researchers, engineers, and students seeking to comprehend and apply numerical methods and computational tools in fluid dynamics and heat transfer problems.
Author | : Tariq M. Arif |
Publisher | : Springer Nature |
Total Pages | : 93 |
Release | : 2022-05-31 |
Genre | : Technology & Engineering |
ISBN | : 3031796659 |
This book provides a short introduction and easy-to-follow implementation steps of deep learning using Google Cloud Platform. It also includes a practical case study that highlights the utilization of Python and related libraries for running a pre-trained deep learning model. In recent years, deep learning-based modeling approaches have been used in a wide variety of engineering domains, such as autonomous cars, intelligent robotics, computer vision, natural language processing, and bioinformatics. Also, numerous real-world engineering applications utilize an existing pre-trained deep learning model that has already been developed and optimized for a related task. However, incorporating a deep learning model in a research project is quite challenging, especially for someone who doesn't have related machine learning and cloud computing knowledge. Keeping that in mind, this book is intended to be a short introduction of deep learning basics through the example of a practical implementation case. The audience of this short book is undergraduate engineering students who wish to explore deep learning models in their class project or senior design project without having a full journey through the machine learning theories. The case study part at the end also provides a cost-effective and step-by-step approach that can be replicated by others easily.
Author | : Siyuan Xing |
Publisher | : Springer Nature |
Total Pages | : 73 |
Release | : 2022-05-31 |
Genre | : Technology & Engineering |
ISBN | : 3031796691 |
In this book, the global sequential scenario of bifurcation trees of periodic motions to chaos in nonlinear dynamical systems is presented for a better understanding of global behaviors and motion transitions for one periodic motion to another one. A 1-dimensional (1-D), time-delayed, nonlinear dynamical system is considered as an example to show how to determine the global sequential scenarios of the bifurcation trees of periodic motions to chaos. All stable and unstable periodic motions on the bifurcation trees can be determined. Especially, the unstable periodic motions on the bifurcation trees cannot be achieved from the traditional analytical methods, and such unstable periodic motions and chaos can be obtained through a specific control strategy. The sequential periodic motions in such a 1-D time-delayed system are achieved semi-analytically, and the corresponding stability and bifurcations are determined by eigenvalue analysis. Each bifurcation tree of a specific periodic motion to chaos are presented in detail. The bifurcation tree appearance and vanishing are determined by the saddle-node bifurcation, and the cascaded period-doubled periodic solutions are determined by the period-doubling bifurcation. From finite Fourier series, harmonic amplitude and harmonic phases for periodic motions on the global bifurcation tree are obtained for frequency analysis. Numerical illustrations of periodic motions are given for complex periodic motions in global bifurcation trees. The rich dynamics of the 1-D, delayed, nonlinear dynamical system is presented. Such global sequential periodic motions to chaos exist in nonlinear dynamical systems. The frequency-amplitude analysis can be used for re-construction of analytical expression of periodic motions, which can be used for motion control in dynamical systems.
Author | : Majid Ghassemi |
Publisher | : Academic Press |
Total Pages | : 162 |
Release | : 2017-03-15 |
Genre | : Science |
ISBN | : 0128038527 |
Nano and Bio Heat Transfer and Fluid Flow focuses on the use of nanoparticles for bio application and bio-fluidics from an engineering perspective. It introduces the mechanisms underlying thermal and fluid interaction of nanoparticles with biological systems. This book will help readers translate theory into real world applications, such as drug delivery and lab-on-a-chip. The content covers how transport at the nano-scale differs from the macro-scale, also discussing what complications can arise in a biologic system at the nano-scale. It is ideal for students and early career researchers, engineers conducting experimental work on relevant applications, or those who develop computer models to investigate/design these systems. Content coverage includes biofluid mechanics, transport phenomena, micro/nano fluid flows, and heat transfer. - Discusses nanoparticle applications in drug delivery - Covers the engineering fundamentals of bio heat transfer and fluid flow - Explains how to simulate, analyze, and evaluate the transportation of heat and mass problems in bio-systems
Author | : Mohsen Sheikholeslami |
Publisher | : William Andrew |
Total Pages | : 356 |
Release | : 2016-03-08 |
Genre | : Technology & Engineering |
ISBN | : 0323431771 |
This book seeks to comprehensively cover recent progress in computational fluid dynamics and nonlinear science and its applications to MHD and FHD nanofluid flow and heat transfer. The book will be a valuable reference source to researchers in various fields, including materials science, nanotechnology, mathematics, physics, information science, engineering and medicine, seeing to understand the impact of external magnetic fields on the hydrothermal behavior of nanofluids in order to solve a wide variety of theoretical and practical problems. - Readers will gain a full understanding of the fundamentals in new numerical and analytical methods in MHD (Magnetohydrodynamics) - Includes complete coverage of governing equations in which nanofluid is used as working fluid, and where magnetic fields are applied to nanofluids - A single-source reference covering recent progress in computational fluid dynamics and nonlinear science, and its applications to MHD and FHD nanofluid flow and heat transfer
Author | : Mohsen Sheikholeslami |
Publisher | : Elsevier |
Total Pages | : 782 |
Release | : 2018-09-14 |
Genre | : Technology & Engineering |
ISBN | : 0128141530 |
Application of Control Volume Based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer discusses this powerful numerical method that uses the advantages of both finite volume and finite element methods for the simulation of multi-physics problems in complex geometries, along with its applications in heat transfer and nanofluid flow. The book applies these methods to solve various applications of nanofluid in heat transfer enhancement. Topics covered include magnetohydrodynamic flow, electrohydrodynamic flow and heat transfer, melting heat transfer, and nanofluid flow in porous media, all of which are demonstrated with case studies. This is an important research reference that will help readers understand the principles and applications of this novel method for the analysis of nanofluid behavior in a range of external forces. - Explains governing equations for nanofluid as working fluid - Includes several CVFEM codes for use in nanofluid flow analysis - Shows how external forces such as electric fields and magnetic field effects nanofluid flow