Dynamics and Control of Nuclear Reactors

Dynamics and Control of Nuclear Reactors
Author: Thomas W. Kerlin
Publisher: Academic Press
Total Pages: 404
Release: 2019-10-05
Genre: Technology & Engineering
ISBN: 0128152621

Dynamics and Control of Nuclear Reactors presents the latest knowledge and research in reactor dynamics, control and instrumentation; important factors in ensuring the safe and economic operation of nuclear power plants. This book provides current and future engineers with a single resource containing all relevant information, including detailed treatments on the modeling, simulation, operational features and dynamic characteristics of pressurized light-water reactors, boiling light-water reactors, pressurized heavy-water reactors and molten-salt reactors. It also provides pertinent, but less detailed information on small modular reactors, sodium fast reactors, and gas-cooled reactors. - Provides case studies and examples to demonstrate learning through problem solving, including an analysis of accidents at Three Mile Island, Chernobyl and Fukushima Daiichi - Includes MATLAB codes to enable the reader to apply the knowledge gained to their own projects and research - Features examples and problems that illustrate the principles of dynamic analysis as well as the mathematical tools necessary to understand and apply the analysis Publishers Note: Table 3.1 has been revised and will be included in future printings of the book with the following data: Group Decay Constant, li (sec-1) Delayed Neutron Fraction (bi) 1 0.0124 0.000221 2 0.0305 0.001467 3 0.111 0.001313 4 0.301 0.002647 5 1.14 0.000771 6 3.01 0.000281 Total delayed neutron fraction: 0.0067

Modeling and Control of a Large Nuclear Reactor

Modeling and Control of a Large Nuclear Reactor
Author: S R Shimjith
Publisher: Springer
Total Pages: 154
Release: 2012-08-10
Genre: Technology & Engineering
ISBN: 364230589X

Control analysis and design of large nuclear reactors requires a suitable mathematical model representing the steady state and dynamic behavior of the reactor with reasonable accuracy. This task is, however, quite challenging because of several complex dynamic phenomena existing in a reactor. Quite often, the models developed would be of prohibitively large order, non-linear and of complex structure not readily amenable for control studies. Moreover, the existence of simultaneously occurring dynamic variations at different speeds makes the mathematical model susceptible to numerical ill-conditioning, inhibiting direct application of standard control techniques. This monograph introduces a technique for mathematical modeling of large nuclear reactors in the framework of multi-point kinetics, to obtain a comparatively smaller order model in standard state space form thus overcoming these difficulties. It further brings in innovative methods for controller design for systems exhibiting multi-time-scale property, with emphasis on three-time-scale systems.

The Physics of Nuclear Reactors

The Physics of Nuclear Reactors
Author: Serge Marguet
Publisher: Springer
Total Pages: 1462
Release: 2018-02-26
Genre: Science
ISBN: 3319595601

This comprehensive volume offers readers a progressive and highly detailed introduction to the complex behavior of neutrons in general, and in the context of nuclear power generation. A compendium and handbook for nuclear engineers, a source of teaching material for academic lecturers as well as a graduate text for advanced students and other non-experts wishing to enter this field, it is based on the author’s teaching and research experience and his recognized expertise in nuclear safety. After recapping a number of points in nuclear physics, placing the theoretical notions in their historical context, the book successively reveals the latest quantitative theories concerning: • The slowing-down of neutrons in matter • The charged particles and electromagnetic rays • The calculation scheme, especially the simplification hypothesis • The concept of criticality based on chain reactions • The theory of homogeneous and heterogeneous reactors • The problem of self-shielding • The theory of the nuclear reflector, a subject largely ignored in literature • The computational methods in transport and diffusion theories Complemented by more than 400 bibliographical references, some of which are commented and annotated, and augmented by an appendix on the history of reactor physics at EDF (Electricité De France), this book is the most comprehensive and up-to-date introduction to and reference resource in neutronics and reactor theory.

Nuclear Reactor Analysis

Nuclear Reactor Analysis
Author: James J. Duderstadt
Publisher: Wiley
Total Pages: 0
Release: 1991-01-16
Genre: Technology & Engineering
ISBN: 9780471223634

Classic textbook for an introductory course in nuclear reactor analysis that introduces the nuclear engineering student to the basic scientific principles of nuclear fission chain reactions and lays a foundation for the subsequent application of these principles to the nuclear design and analysis of reactor cores. This text introduces the student to the fundamental principles governing nuclear fission chain reactions in a manner that renders the transition to practical nuclear reactor design methods most natural. The authors stress throughout the very close interplay between the nuclear analysis of a reactor core and those nonnuclear aspects of core analysis, such as thermal-hydraulics or materials studies, which play a major role in determining a reactor design.

Exergy

Exergy
Author: Ibrahim Dincer
Publisher: Newnes
Total Pages: 571
Release: 2012-12-31
Genre: Technology & Engineering
ISBN: 0080970907

Exergy, Second Edition deals with exergy and its applications to various energy systems and applications as a potential tool for design, analysis and optimization, and its role in minimizing and/or eliminating environmental impacts and providing sustainable development. In this regard, several key topics ranging from the basics of the thermodynamic concepts to advanced exergy analysis techniques in a wide range of applications are covered as outlined in the contents. - Offers comprehensive coverage of exergy and its applications, along with the most up-to-date information in the area with recent developments - Connects exergy with three essential areas in terms of energy, environment and sustainable development - Provides a number of illustrative examples, practical applications, and case studies - Written in an easy-to-follow style, starting from the basics to advanced systems

Nuclear Power and the Environment

Nuclear Power and the Environment
Author: Royal Society of Chemistry (Great Britain)
Publisher: Royal Society of Chemistry
Total Pages: 247
Release: 2011
Genre: Business & Economics
ISBN: 1849731942

Reviews the political and social context for nuclear power generation, the nuclear fuel cycles and their implications for the environment.

Introductory Nuclear Reactor Dynamics

Introductory Nuclear Reactor Dynamics
Author: Karl Otto Ott
Publisher:
Total Pages: 384
Release: 1985
Genre: Technology & Engineering
ISBN:

This text presents the theory and methods of prediction that are the heart of nuclear reactor safety. Time-dependent reactor behavior is explained in both mathematical and physical terms. This book also explains the logic behind the working formulas and calculational methods for reactor transients and illustrates typical dynamic responses. The classical concept of point kinetics is developed in three steps, with discussion of various solutions to kinetics problems. Each chapter includes homework problems and review questions.

NUREG/CR.

NUREG/CR.
Author: U.S. Nuclear Regulatory Commission
Publisher:
Total Pages: 164
Release: 1977
Genre: Nuclear energy
ISBN:

Fractional-order Modeling of Nuclear Reactor: From Subdiffusive Neutron Transport to Control-oriented Models

Fractional-order Modeling of Nuclear Reactor: From Subdiffusive Neutron Transport to Control-oriented Models
Author: Vishwesh Vyawahare
Publisher: Springer
Total Pages: 210
Release: 2018-02-03
Genre: Technology & Engineering
ISBN: 9811075875

This book addresses the topic of fractional-order modeling of nuclear reactors. Approaching neutron transport in the reactor core as anomalous diffusion, specifically subdiffusion, it starts with the development of fractional-order neutron telegraph equations. Using a systematic approach, the book then examines the development and analysis of various fractional-order models representing nuclear reactor dynamics, ultimately leading to the fractional-order linear and nonlinear control-oriented models. The book utilizes the mathematical tool of fractional calculus, the calculus of derivatives and integrals with arbitrary non-integer orders (real or complex), which has recently been found to provide a more compact and realistic representation to the dynamics of diverse physical systems. Including extensive simulation results and discussing important issues related to the fractional-order modeling of nuclear reactors, the book offers a valuable resource for students and researchers working in the areas of fractional-order modeling and control and nuclear reactor modeling.