On Electrohydraulic Pressure Control for Power Steering Applications

On Electrohydraulic Pressure Control for Power Steering Applications
Author: Alessandro Dell'Amico
Publisher: Linköping University Electronic Press
Total Pages: 209
Release: 2016-02-04
Genre:
ISBN: 9176858383

This thesis deals with the Electrohydraulic Power Steering system for road vehicles, using electronic pressure control valves. With an ever increasing demand for safer vehicles and fewer traffic accidents, steering-related active safety functions are becoming more common in modern vehicles. Future road vehicles will also evolve towards autonomous vehicles, with several safety, environmental and financial benefits. A key component in realising such solutions is active steering. The power steering system was initially developed to ease the driver's workload by assisting in turning the wheels. This is traditionally done through a passive open-centre hydraulic system and heavy trucks must still rely on fluid power, due to the heavy work forces. Since the purpose of the original system is to control the assistive pressure, one way would be to use proportional pressure control valves. Since these are electronically controlled, active steering is possible and with closed-centre, energy efficiency can be significantly improved on. In this work, such a system is analysed in detail with the purpose of investigating the possible use of the system for Boost curve control and position control for autonomous driving. Commercially available valves are investigated since they provide an attractive solution. A model-based approach is adopted, where simulation of the system is an important tool. Another important tool is hardware-in-the-loop simulation. A test rig of an electrohydraulic power steering system, is developed. This work has shown how proportional pressure control valves can be used for Boost curve control and position control and what implications this has on a system level. As it turns out, the valves add a great deal of time lag and with the high gain from the Boost curve, this creates a control challenge. The problem can be handled by tuning the Boost gain, pressure response and damping and has been effectively shown through simulation and experiments. For position control, there is greater freedom to design the controller to fit the system. The pressure response can be made fast enough for this case and the time lag is much less critical.

Simulation of Fluid Power Systems with Simcenter Amesim

Simulation of Fluid Power Systems with Simcenter Amesim
Author: Nicolae Vasiliu
Publisher: CRC Press
Total Pages: 635
Release: 2018-04-09
Genre: Science
ISBN: 1482253569

This book illustrates numerical simulation of fluid power systems by LMS Amesim Platform covering hydrostatic transmissions, electro hydraulic servo valves, hydraulic servomechanisms for aerospace engineering, speed governors for power machines, fuel injection systems, and automotive servo systems It includes hydrostatic transmissions, automotive fuel injection, hydropower speed units governor, aerospace servo systems along with case studies of specified companies Aids in predicting and optimizing the static and dynamic performances related to the systems under study

Vehicle Dynamics

Vehicle Dynamics
Author: Dieter Schramm
Publisher: Springer
Total Pages: 450
Release: 2017-07-03
Genre: Technology & Engineering
ISBN: 3662544830

The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context, different levels of complexity are presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models based on real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios. In addition to some corrections, further application examples for standard driving maneuvers have been added for the present second edition. To take account of the increased use of driving simulators, both in research, and in industrial applications, a new section on the conception, implementation and application of driving simulators has been added.

Dynamics and Model-Based Control of Electric Power Steering Systems

Dynamics and Model-Based Control of Electric Power Steering Systems
Author: Mehrabi Naser
Publisher:
Total Pages:
Release: 2014
Genre:
ISBN:

Many automobile manufacturers are switching to Electric Power Steering (EPS) systems for their better performance and cost advantages over traditional Hydraulic Power Steering (HPS) systems. EPS compared to HPS offer lower energy consumption, lower total weight, and package flexibility at no cost penalty. Furthermore, since EPS systems can provide assistance to drivers independent of the vehicle driving conditions, new technologies can be implemented to improve the steering feel and safety, simultaneously. In this thesis, a neuromusculoskeletal driver and a high-fidelity vehicle model are developed in MapleSim to provide realistic simulations to study the driver-vehicle interactions and EPS systems. The vehicle model consists of MacPherson and multilink suspensions at front and rear equipped with a column-type EPS system. The driver model is a fully neuromusculoskeletal model of a driver arm holding the steering wheel, controlled by the driver's central nervous system. A hierarchical approach is used to capture the complexity of the neuromuscular dynamics and the central nervous system in the coordination of the driver's upper extremity activities. The proposed motor control framework has three layers: the first layer, or the path-planning layer, plans a desired vehicle trajectory and the required steering angles to perform the desired trajectory, the second layer (or the force distribution controller) actuates the musculoskeletal arm, and the final layer is added to ensure the precision control and disturbance rejection of the motor control units. The overall goal of this thesis is to study vehicle-driver interactions and to design a model-based EPS controller that considers the driver's characteristics. To design such an EPS controller, the high-fidelity driver-vehicle model is simplified to reduce the computational burden associated with the multibody and biomechanical systems. Then, four driver types are introduced based on the physical characteristics of drivers such as age and gender, and the corresponding parameters are incorporated in the model. Last but not least, a new model-based EPS controller is developed to provide appropriate assistance to each of the predefined driver types. To do this, the characteristic curves are tuned using a systematic optimization procedure to provide appropriate assistance to drivers with different physical strength, in order to have a similar road and steering feel. In this thesis, it is recommended that muscle fatigue be used as a measure of steering feel. Then, based on the tuned EPS characteristic curves, an observer-based optimal disturbance rejection controller, consisting of a linear quadratic regulator controller and a Kalman filter observer augmented with a shaping filter, is developed to deliver the assistance while attenuating external disturbances. The results show that it is possible to develop a model-based EPS controller that is optimized for a given driver population.