Ultra High Performance Concrete
Author | : Ekkehard Fehling |
Publisher | : kassel university press GmbH |
Total Pages | : 922 |
Release | : 2008-01-01 |
Genre | : High strength concrete |
ISBN | : 3899583760 |
Download Model Based Optimization Of Ultra High Performance Concrete Highway Bridge Girders full books in PDF, epub, and Kindle. Read online free Model Based Optimization Of Ultra High Performance Concrete Highway Bridge Girders ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Ekkehard Fehling |
Publisher | : kassel university press GmbH |
Total Pages | : 922 |
Release | : 2008-01-01 |
Genre | : High strength concrete |
ISBN | : 3899583760 |
Author | : FIB – International Federation for Structural Concrete |
Publisher | : FIB - Féd. Int. du Béton |
Total Pages | : 344 |
Release | : 2004-04-01 |
Genre | : Technology & Engineering |
ISBN | : |
Author | : FIB – International Federation for Structural Concrete |
Publisher | : FIB - Féd. Int. du Béton |
Total Pages | : 5718 |
Release | : 2010-06-01 |
Genre | : Technology & Engineering |
ISBN | : 1617828211 |
Author | : H. G. Russell |
Publisher | : |
Total Pages | : 776 |
Release | : 2005 |
Genre | : Concrete construction |
ISBN | : |
Author | : W. P. De Wilde |
Publisher | : WIT Press |
Total Pages | : 577 |
Release | : 2008 |
Genre | : Technology & Engineering |
ISBN | : 184564106X |
Including the latest developments in design, optimisation, manufacturing and experimentation, this text presents a wide range of topics relating to advanced types of structures, particularly those based on new concepts and new types of materials.
Author | : Hiroshi Yokota |
Publisher | : CRC Press |
Total Pages | : 8732 |
Release | : 2021-04-20 |
Genre | : Technology & Engineering |
ISBN | : 100017381X |
Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations contains lectures and papers presented at the Tenth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2020), held in Sapporo, Hokkaido, Japan, April 11–15, 2021. This volume consists of a book of extended abstracts and a USB card containing the full papers of 571 contributions presented at IABMAS 2020, including the T.Y. Lin Lecture, 9 Keynote Lectures, and 561 technical papers from 40 countries. The contributions presented at IABMAS 2020 deal with the state of the art as well as emerging concepts and innovative applications related to the main aspects of maintenance, safety, management, life-cycle sustainability and technological innovations of bridges. Major topics include: advanced bridge design, construction and maintenance approaches, safety, reliability and risk evaluation, life-cycle management, life-cycle sustainability, standardization, analytical models, bridge management systems, service life prediction, maintenance and management strategies, structural health monitoring, non-destructive testing and field testing, safety, resilience, robustness and redundancy, durability enhancement, repair and rehabilitation, fatigue and corrosion, extreme loads, and application of information and computer technology and artificial intelligence for bridges, among others. This volume provides both an up-to-date overview of the field of bridge engineering and significant contributions to the process of making more rational decisions on maintenance, safety, management, life-cycle sustainability and technological innovations of bridges for the purpose of enhancing the welfare of society. The Editors hope that these Proceedings will serve as a valuable reference to all concerned with bridge structure and infrastructure systems, including engineers, researchers, academics and students from all areas of bridge engineering.
Author | : Jacques Resplendino |
Publisher | : John Wiley & Sons |
Total Pages | : 678 |
Release | : 2013-01-29 |
Genre | : Technology & Engineering |
ISBN | : 1118587553 |
This book contains the proceedings of the international workshop “Designing and Building with Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC): State of the Art and Development”, organized by AFGC, the French Association for Civil Engineering and French branch of fib, in Marseille (France), November 17-18, 2009. This workshop was focused on the experience of a lot of recent UHPFRC realizations. Through more than 50 papers, this book details the experience of many countries in UHPFRC construction and design, including projects from Japan, Germany, Australia, Austria, USA, Denmark, the Netherlands, Canada... and France. The projects are categorized as novel architectural solutions, new frontiers for bridges, new equipments and structural components, and extending the service life of structures. The last part presents major research results, durability and sustainability aspects, and the updated AFGC Recommendations on UHPFRC.
Author | : Devin K. Harris |
Publisher | : |
Total Pages | : 72 |
Release | : 2005 |
Genre | : Fiber-reinforced concrete |
ISBN | : |
Ultra-high performance concrete (UHPC) is a relatively new type of concrete that exhibits mechanical properties that are far superior to those of conventional concrete and in some cases rival those of steel. The main characteristics that distinguish UHPC from conventional reinforced concrete are its very high compressive strength (20 to 33 ksi), the addition of steel fibers which enables tension to be carried across open cracks without conventional reinforcing steel, and a very high resistance to corrosion and degradation. The mechanical properties of UHPC allow for smaller, thinner sections as compared to conventional reinforced concrete sections. However, as it is a new material, the use of UHPC has been limited to a few structural applications due primarily to the high cost of the material and the lack of established design guidelines. In previous research, a material model based on physical tests was used in conjunction with finite element models to develop an optimized cross-section for a prestressed UHPC girder for bridge applications. The cross-section is a double-tee with bulbs at the bottoms of the webs to accommodate the prestressing strands. As it is envisioned in bridge applications, the double-tees will be placed directly adjacent to one another, and the top flange will act as the riding surface after a thin asphalt overlay is placed. Based on the longitudinal compressive stresses, the top flange of the girder can be quite thin. However, there exists the possibility that a punching shear failure could occur from the application of a point load such as a wheel patch load if the flange is made too thin. The research reported herein was initiated to characterize the punching shear capacity of thin UHPC plates and to develop recommendations on the minimum top flange thickness for the optimized double-tee. Twelve small slabs (45 in x 45 in) were tested to failure to characterize the punching shear strength of UHPC. The variables considered were the slab thickness (2, 2.5, and 3 in) and loading plate dimensions (from 1 in x 1 in to 3 in x 3 in). The results of the testing were compared to several existing models for punching shear. The two equations that predicted strengths most reliably were the current ACI punching shear equation and a modified bolt pull-out equation. After evaluation of the test results, the minimum slab thickness required to prevent a punching shear failure in the top flange due to an 8 in x 20 in wheel patch was determined to be 1 in. Three larger slabs were also tested. These slabs had the same clear span length as the top flange of the optimized double-tee and were loaded with a wheel patch load. The slabs were all approximately 3 in thick and all failed in flexure rather than punching shear. It was concluded that the casting method has a strong influence on the orientation of the steel fibers, which in turn influences the flexural strength in orthogonal directions in the slab. The top flange thickness will be governed by transverse bending rather than punching shear, and the 3 in slabs were not able to support the full wheel load plus impact and load factor. The results of this research help in the continued optimization of a UHPC shape for use in highway bridges. If material use in the girder is minimized, UHPC bridges can become economically competitive with HPC bridges, but offer the benefits of more rapid construction and better durability.
Author | : U. S. Department of Transportation |
Publisher | : Lulu.com |
Total Pages | : 176 |
Release | : 2016-01-14 |
Genre | : Technology & Engineering |
ISBN | : 9781329831513 |
Ultra-high performance concrete (UHPC) is an advanced construction material that affords new opportunities for the future of the highway infrastructure. The Federal Highway Administration has been engaged in research on the optimal uses of UHPC in the highway bridge infrastructure since 2001 through its Bridge of the Future initiative. This report presents the state of the art in UHPC with regard to uses in the highway transportation infrastructure. Compiled from hundreds of references representing research, development, and deployment efforts around the world, this report provides a framework for gaining a deeper understanding of UHPC as well as a platform from which to increase the use of this class of advanced cementitious composite materials. This report will assist stakeholders, including State transportation departments, researchers, and design consultants, to grasp the capabilities of UHPC and thus use the material to address pressing needs in the highway transportation infrastructure.
Author | : Zhongya Zhang |
Publisher | : Frontiers Media SA |
Total Pages | : 222 |
Release | : 2024-08-28 |
Genre | : Technology & Engineering |
ISBN | : 2832553672 |
Global warming, caused by a significant increase in the concentration of greenhouse gases (GHGs) such as CO2, has become a concern all over the world. The whole process carbon emissions of the civil engineering industry account for nearly 40% of global energy and process-related CO2 emissions, more than half of which come from the process of producing, using, constructing and dismantling in civil engineering materials and structures, resulting in the embodied carbon emissions. With the acceleration of global warming, warmer and uncertain climates will make engineering materials and structures subject to more severe environmental conditions. A series of durability issues will occur more frequently, such as the significant variations of humidity in air, the chloride-induced corrosion caused by the severe chloride ingress, concrete cracking caused by the expansion of rusts, and more severe carbonation of concrete structures due to the increase in CO2 concentration. The adoption of positive measures to address climate change has become a global consensus, as global warming has led to serious threats and challenges to the survival and development of humankind.