Mining Of Massive Datasets
Download Mining Of Massive Datasets full books in PDF, epub, and Kindle. Read online free Mining Of Massive Datasets ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Jure Leskovec |
Publisher | : Cambridge University Press |
Total Pages | : 480 |
Release | : 2014-11-13 |
Genre | : Computers |
ISBN | : 1107077230 |
Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.
Author | : Dzejla Medjedovic |
Publisher | : Simon and Schuster |
Total Pages | : 302 |
Release | : 2022-08-16 |
Genre | : Computers |
ISBN | : 1638356564 |
Massive modern datasets make traditional data structures and algorithms grind to a halt. This fun and practical guide introduces cutting-edge techniques that can reliably handle even the largest distributed datasets. In Algorithms and Data Structures for Massive Datasets you will learn: Probabilistic sketching data structures for practical problems Choosing the right database engine for your application Evaluating and designing efficient on-disk data structures and algorithms Understanding the algorithmic trade-offs involved in massive-scale systems Deriving basic statistics from streaming data Correctly sampling streaming data Computing percentiles with limited space resources Algorithms and Data Structures for Massive Datasets reveals a toolbox of new methods that are perfect for handling modern big data applications. You’ll explore the novel data structures and algorithms that underpin Google, Facebook, and other enterprise applications that work with truly massive amounts of data. These effective techniques can be applied to any discipline, from finance to text analysis. Graphics, illustrations, and hands-on industry examples make complex ideas practical to implement in your projects—and there’s no mathematical proofs to puzzle over. Work through this one-of-a-kind guide, and you’ll find the sweet spot of saving space without sacrificing your data’s accuracy. About the technology Standard algorithms and data structures may become slow—or fail altogether—when applied to large distributed datasets. Choosing algorithms designed for big data saves time, increases accuracy, and reduces processing cost. This unique book distills cutting-edge research papers into practical techniques for sketching, streaming, and organizing massive datasets on-disk and in the cloud. About the book Algorithms and Data Structures for Massive Datasets introduces processing and analytics techniques for large distributed data. Packed with industry stories and entertaining illustrations, this friendly guide makes even complex concepts easy to understand. You’ll explore real-world examples as you learn to map powerful algorithms like Bloom filters, Count-min sketch, HyperLogLog, and LSM-trees to your own use cases. What's inside Probabilistic sketching data structures Choosing the right database engine Designing efficient on-disk data structures and algorithms Algorithmic tradeoffs in massive-scale systems Computing percentiles with limited space resources About the reader Examples in Python, R, and pseudocode. About the author Dzejla Medjedovic earned her PhD in the Applied Algorithms Lab at Stony Brook University, New York. Emin Tahirovic earned his PhD in biostatistics from University of Pennsylvania. Illustrator Ines Dedovic earned her PhD at the Institute for Imaging and Computer Vision at RWTH Aachen University, Germany. Table of Contents 1 Introduction PART 1 HASH-BASED SKETCHES 2 Review of hash tables and modern hashing 3 Approximate membership: Bloom and quotient filters 4 Frequency estimation and count-min sketch 5 Cardinality estimation and HyperLogLog PART 2 REAL-TIME ANALYTICS 6 Streaming data: Bringing everything together 7 Sampling from data streams 8 Approximate quantiles on data streams PART 3 DATA STRUCTURES FOR DATABASES AND EXTERNAL MEMORY ALGORITHMS 9 Introducing the external memory model 10 Data structures for databases: B-trees, Bε-trees, and LSM-trees 11 External memory sorting
Author | : Mohammed J. Zaki |
Publisher | : Cambridge University Press |
Total Pages | : 779 |
Release | : 2020-01-30 |
Genre | : Business & Economics |
ISBN | : 1108473989 |
New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.
Author | : R.L. Grossman |
Publisher | : Springer Science & Business Media |
Total Pages | : 632 |
Release | : 2001-10-31 |
Genre | : Computers |
ISBN | : 9781402001147 |
Advances in technology are making massive data sets common in many scientific disciplines, such as astronomy, medical imaging, bio-informatics, combinatorial chemistry, remote sensing, and physics. To find useful information in these data sets, scientists and engineers are turning to data mining techniques. This book is a collection of papers based on the first two in a series of workshops on mining scientific datasets. It illustrates the diversity of problems and application areas that can benefit from data mining, as well as the issues and challenges that differentiate scientific data mining from its commercial counterpart. While the focus of the book is on mining scientific data, the work is of broader interest as many of the techniques can be applied equally well to data arising in business and web applications. Audience: This work would be an excellent text for students and researchers who are familiar with the basic principles of data mining and want to learn more about the application of data mining to their problem in science or engineering.
Author | : Mohammed J. Zaki |
Publisher | : Cambridge University Press |
Total Pages | : 607 |
Release | : 2014-05-12 |
Genre | : Computers |
ISBN | : 0521766338 |
A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.
Author | : Ken Yale |
Publisher | : Elsevier |
Total Pages | : 824 |
Release | : 2017-11-09 |
Genre | : Mathematics |
ISBN | : 0124166458 |
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
Author | : Jiawei Han |
Publisher | : Elsevier |
Total Pages | : 740 |
Release | : 2011-06-09 |
Genre | : Computers |
ISBN | : 0123814804 |
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data
Author | : Françoise Fogelman-Soulié |
Publisher | : IOS Press |
Total Pages | : 388 |
Release | : 2008 |
Genre | : Computers |
ISBN | : 1586038982 |
The real power for security applications will come from the synergy of academic and commercial research focusing on the specific issue of security. This book is suitable for those interested in understanding the techniques for handling very large data sets and how to apply them in conjunction for solving security issues.
Author | : James Abello |
Publisher | : Springer |
Total Pages | : 1209 |
Release | : 2013-12-21 |
Genre | : Computers |
ISBN | : 1461500052 |
The proliferation of massive data sets brings with it a series of special computational challenges. This "data avalanche" arises in a wide range of scientific and commercial applications. With advances in computer and information technologies, many of these challenges are beginning to be addressed by diverse inter-disciplinary groups, that indude computer scientists, mathematicians, statisticians and engineers, working in dose cooperation with application domain experts. High profile applications indude astrophysics, bio-technology, demographics, finance, geographi cal information systems, government, medicine, telecommunications, the environment and the internet. John R. Tucker of the Board on Mathe matical Seiences has stated: "My interest in this problern (Massive Data Sets) isthat I see it as the rnost irnportant cross-cutting problern for the rnathernatical sciences in practical problern solving for the next decade, because it is so pervasive. " The Handbook of Massive Data Sets is comprised of articles writ ten by experts on selected topics that deal with some major aspect of massive data sets. It contains chapters on information retrieval both in the internet and in the traditional sense, web crawlers, massive graphs, string processing, data compression, dustering methods, wavelets, op timization, external memory algorithms and data structures, the US national duster project, high performance computing, data warehouses, data cubes, semi-structured data, data squashing, data quality, billing in the large, fraud detection, and data processing in astrophysics, air pollution, biomolecular data, earth observation and the environment.
Author | : Rajesh Bordawekar |
Publisher | : Morgan & Claypool Publishers |
Total Pages | : 126 |
Release | : 2015-10-30 |
Genre | : Computers |
ISBN | : 1627058362 |
This book aims to achieve the following goals: (1) to provide a high-level survey of key analytics models and algorithms without going into mathematical details; (2) to analyze the usage patterns of these models; and (3) to discuss opportunities for accelerating analytics workloads using software, hardware, and system approaches. The book first describes 14 key analytics models (exemplars) that span data mining, machine learning, and data management domains. For each analytics exemplar, we summarize its computational and runtime patterns and apply the information to evaluate parallelization and acceleration alternatives for that exemplar. Using case studies from important application domains such as deep learning, text analytics, and business intelligence (BI), we demonstrate how various software and hardware acceleration strategies are implemented in practice. This book is intended for both experienced professionals and students who are interested in understanding core algorithms behind analytics workloads. It is designed to serve as a guide for addressing various open problems in accelerating analytics workloads, e.g., new architectural features for supporting analytics workloads, impact on programming models and runtime systems, and designing analytics systems.