Microwave Rf Antennas And Circuits
Download Microwave Rf Antennas And Circuits full books in PDF, epub, and Kindle. Read online free Microwave Rf Antennas And Circuits ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Ofer Aluf |
Publisher | : Springer |
Total Pages | : 1060 |
Release | : 2016-12-01 |
Genre | : Technology & Engineering |
ISBN | : 3319454277 |
This book describes a new concept for analyzing RF/microwave circuits, which includes RF/microwave antennas. The book is unique in its emphasis on practical and innovative microwave RF engineering applications. The analysis is based on nonlinear dynamics and chaos models and shows comprehensive benefits and results. All conceptual RF microwave circuits and antennas are innovative and can be broadly implemented in engineering applications. Given the dynamics of RF microwave circuits and antennas, they are suitable for use in a broad range of applications. The book presents analytical methods for microwave RF antennas and circuit analysis, concrete examples, and geometric examples. The analysis is developed systematically, starting with basic differential equations and their bifurcations, and subsequently moving on to fixed point analysis, limit cycles and their bifurcations. Engineering applications include microwave RF circuits and antennas in a variety of topological structures, RFID ICs and antennas, microstrips, circulators, cylindrical RF network antennas, Tunnel Diodes (TDs), bipolar transistors, field effect transistors (FETs), IMPATT amplifiers, Small Signal (SS) amplifiers, Bias-T circuits, PIN diode circuits, power amplifiers, oscillators, resonators, filters, N-turn antennas, dual spiral coil antennas, helix antennas, linear dipole and slot arrays, and hybrid translinear circuits. In each chapter, the concept is developed from the basic assumptions up to the final engineering outcomes. The scientific background is explained at basic and advanced levels and closely integrated with mathematical theory. The book also includes a wealth of examples, making it ideal for intermediate graduate level studies. It is aimed at electrical and electronic engineers, RF and microwave engineers, students and researchers in physics, and will also greatly benefit all engineers who have had no formal instruction in nonlinear dynamics, but who now desire to bridge the gap between innovative microwave RF circuits and antennas and advanced mathematical analysis methods.
Author | : Bradford L. Smith |
Publisher | : Taylor & Francis |
Total Pages | : 466 |
Release | : 1993 |
Genre | : Technology & Engineering |
ISBN | : 9780442316280 |
This second volume of the three-volume complete reference on microwave engineering covers all of the major circuit types used in microwave systems, and also covers antennas and propagation, an area vital to microwave systems. The emphasis is on fundamental principles and practical hardware, providing a wealth of information for engineers and system designers. Annotation copyright by Book News, Inc., Portland, OR
Author | : Charles E. Free |
Publisher | : John Wiley & Sons |
Total Pages | : 532 |
Release | : 2021-09-14 |
Genre | : Technology & Engineering |
ISBN | : 1119114632 |
RF and Microwave Circuit Design Provides up-to-date coverage of the fundamentals of high-frequency microwave technology, written by two leading voices in the field RF and Microwave Circuit Design: Theory and Applications is an authoritative, highly practical introduction to basic RF and microwave circuits. With an emphasis on real-world examples, the text explains how distributed circuits using microstrip and other planar transmission lines can be designed and fabricated for use in modern high-frequency passive and active circuits and sub-systems. The authors provide clear and accurate guidance on each essential aspect of circuit design, from the theory of transmission lines to the passive and active circuits that form the basis of modern high-frequency circuits and sub-systems. Assuming a basic grasp of electronic concepts, the book is organized around first principles and includes an extensive set of worked examples to guide student readers with no prior grounding in the subject of high-frequency microwave technology. Throughout the text, detailed coverage of practical design using distributed circuits demonstrates the influence of modern fabrication processes. Filling a significant gap in literature by addressing RF and microwave circuit design with a central theme of planar distributed circuits, this textbook: Provides comprehensive discussion of the foundational concepts of RF and microwave transmission lines introduced through an exploration of wave propagation along a typical transmission line Describes fabrication processes for RF and microwave circuits, including etched, thick-film, and thin-film RF circuits Covers the Smith Chart and its application in circuit design, S-parameters, Mason???s non-touching loop rule, transducer power gain, and stability Discusses the influence of noise in high-frequency circuits and low-noise amplifier design Features an introduction to the design of high-frequency planar antennas Contains supporting chapters on fabrication, circuit parameters, and measurements Includes access to a companion website with PowerPoint slides for instructors, as well as supplementary resources Perfect for senior undergraduate students and first-year graduate students in electrical engineering courses, RF and Microwave Circuit Design: Theory and Applications will also earn a place in the libraries of RF and microwave professionals looking for a useful reference to refresh their understanding of fundamental concepts in the field.
Author | : Max W. Medley |
Publisher | : Artech House Publishers |
Total Pages | : 608 |
Release | : 1993 |
Genre | : Computers |
ISBN | : |
Provides coverage of the most efficient and effective methods of network analysis optimization and synthesis. A step-by-step guide to every aspect of the RF and microwave circuit design process - starting with a set of specifications and ending with hardware that performs as modeled the first time.
Author | : Ofer Aluf |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2024-06-23 |
Genre | : Technology & Engineering |
ISBN | : 9783031586996 |
This book describes a new concept for analyzing RF/microwave circuits, which includes RF/microwave antennas. The book is unique in its emphasis on practical and innovative microwave RF engineering applications. The analysis is based on nonlinear dynamics and chaos models and shows comprehensive benefits and results. All conceptual RF microwave circuits and antennas are innovative and can be broadly implemented in engineering applications. This second edition includes a new chapter about Moebius loop magnetic field sensor systems as well as some necessary changes and correction. Given the dynamics of RF microwave circuits and antennas, they are suitable for use in a broad range of applications. The book presents analytical methods for microwave RF antennas and circuit analysis, concrete examples, and geometric examples. The analysis is developed systematically, starting with basic differential equations and their bifurcations, and subsequently moving on to fixed point analysis, limit cycles, and their bifurcations. Engineering applications include microwave RF circuits and antennas in a variety of topological structures, RFID ICs and antennas, microstrips, circulators, cylindrical RF network antennas, Tunnel Diodes (TDs), bipolar transistors, field effect transistors (FETs), IMPATT amplifiers, Small Signal (SS) amplifiers, Bias-T circuits, PIN diode circuits, power amplifiers, oscillators, resonators, filters, N-turn antennas, dual spiral coil antennas, helix antennas, linear dipole and slot arrays, and hybrid translinear circuits. In each chapter, the concept is developed from the basic assumptions up to the final engineering outcomes. The scientific background is explained at basic and advanced levels and closely integrated with mathematical theory. The book also includes a wealth of examples, making it ideal for intermediate graduate level studies. It is aimed at electrical and electronic engineers, RF and microwave engineers, students and researchers in physics, and will also greatly benefit all engineers who have had no formal instruction in nonlinear dynamics, but who now desire to bridge the gap between innovative microwave RF circuits and antennas and advanced mathematical analysis methods.
Author | : Michael Steer |
Publisher | : NC State University |
Total Pages | : 244 |
Release | : 2019-09 |
Genre | : |
ISBN | : 9781469656885 |
Fundamentals of Microwave and RF Design enables mastery of the essential concepts required to cross the barriers to a successful career in microwave and RF design. Extensive treatment of scattering parameters, that naturally describe power flow, and of Smith-chart-based design procedures prepare the student for success. The emphasis is on design at the module level and on covering the whole range of microwave functions available. The orientation is towards using microstrip transmission line technologies and on gaining essential mathematical, graphical and design skills for module design proficiency. This book is derived from a multi volume comprehensive book series, Microwave and RF Design, Volumes 1-5, with the emphasis in this book being on presenting the fundamental materials required to gain entry to RF and microwave design. This book closely parallels the companion series that can be consulted for in-depth analysis with referencing of the book series being familiar and welcoming. Key Features * A companion volume to a comprehensive series on microwave and RF design * Open access ebook editions are hosted by NC State University Libraries at https://repository.lib.ncsu.edu/handle/1840.20/36776 * 59 worked examples * An average of 24 exercises per chapter * Answers to selected exercises * Emphasis on module-level design using microstrip technologies * Extensive treatment of design using Smith charts * A parallel companion book series provides a detailed reference resource
Author | : Kai Chang |
Publisher | : John Wiley & Sons |
Total Pages | : 392 |
Release | : 2004-05-06 |
Genre | : Technology & Engineering |
ISBN | : 9780471444749 |
The definitive text on microwave ring circuits-now better than ever For the past three decades, the ring resonator has been widely used in such applications as measurements, filters, oscillators, mixers, couplers, power dividers/combiners, antennas, and frequency-selective surfaces, to name just a few. The field has continued to expand, with many new analyses, models, and applications recently reported. Microwave Ring Circuits and Related Structures has long been the only text fully dedicated to the treatment of ring resonators. The second edition has been thoroughly revised to reflect the most current developments in the field. In addition to updating all the original material, the authors have added extensive new coverage on: * A universal model for both rectangular and circular ring configurations * Applications of ring structures for all types of planar circuits * A new transmission line analysis * An abundance of new applications in bandpass and bandstop filters, couplers, oscillators, and antennas While retaining all the features that made the original text so useful to both students and teachers in the field, the second edition seeks to introduce the analysis and models of ring resonators and to apply them to both the old and the new applications, including microstrip, slotline, coplanar waveguide, and waveguide transmission lines. Based on dissertations and papers published by graduate students, scholars, and research associates at A&M University, Microwave Ring Circuits and Related Structures, Second Edition is sure to be a valuable addition to both engineering classrooms and research libraries in the field.
Author | : Frank Gustrau |
Publisher | : John Wiley & Sons |
Total Pages | : 374 |
Release | : 2012-06-22 |
Genre | : Technology & Engineering |
ISBN | : 1118349571 |
This book provides a fundamental and practical introduction to radio frequency and microwave engineering and physical aspects of wireless communication In this book, the author addresses a wide range of radio-frequency and microwave topics with emphasis on physical aspects including EM and voltage waves, transmission lines, passive circuits, antennas, radio wave propagation. Up-to-date RF design tools like RF circuit simulation, EM simulation and computerized smith charts, are used in various examples to demonstrate how these methods can be applied effectively in RF engineering practice. Design rules and working examples illustrate the theoretical parts. The examples are close to real world problems, so the reader can directly transfer the methods within the context of their own work. At the end of each chapter a list of problems is given in order to deepen the reader’s understanding of the chapter material and practice the new competences. Solutions are available on the author’s website. Key Features: Presents a wide range of RF topics with emphasis on physical aspects e.g. EM and voltage waves, transmission lines, passive circuits, antennas Uses various examples of modern RF tools that show how the methods can be applied productively in RF engineering practice Incorporates various design examples using circuit and electromagnetic (EM) simulation software Discusses the propagation of waves: their representation, their effects, and their utilization in passive circuits and antenna structures Provides a list of problems at the end of each chapter Includes an accompanying website containing solutions to the problems (http:\\www.fh-dortmund.de\gustrau_rf_textbook) This will be an invaluable textbook for bachelor and masters students on electrical engineering courses (microwave engineering, basic circuit theory and electromagnetic fields, wireless communications). Early-stage RF practitioners, engineers (e.g. application engineer) working in this area will also find this book of interest.
Author | : Matthew A. Morgan |
Publisher | : Artech House |
Total Pages | : 718 |
Release | : 2019-11-30 |
Genre | : Technology & Engineering |
ISBN | : 1630816515 |
This comprehensive resource provides a thorough introduction to the principles of electronic circuits operating in the radio, microwave, and millimeter-wave frequency ranges. The book highlights the fundamental physical laws of classical electromagnetics using a foundation of Maxwell’s equations to give insight into the operating principles of circuit elements of all kinds, from lumped elements to transmission lines, waveguides, optical fibers, and quasi-optical structures. Standard passive system components like filters, splitters, couplers, hybrids, baluns, and antennas are explained to acclimate the reader to considering multiple technological solutions for common design problems. A basic overview of active circuit designs, such as amplifiers, mixers, and multipliers is also provided, along with discussion of the performance characteristics of electronic systems, including noise and linearity. Emphasis is placed on visualization and understanding of how and why electronic circuits of all frequencies are built and operate the way they do. Readers learn how to match an amplifier for optimum noise performance over the broadest bandwidth with the fewest number of elements and how to visualize the coupling of various modes in a mixed waveguide-type structure and avoid resonances due to trapped, higher-order modes. The book provides the tools needed to design and optimize a launcher from microstrip into waveguide, and whether the best characteristics can be achieved by incorporating matching elements in the microstrip section, the waveguide section, or both. Packed with references and examples, readers learn not only how to do the math but what the math means.
Author | : Thomas H. Lee |
Publisher | : Cambridge University Press |
Total Pages | : 868 |
Release | : 2004-08-30 |
Genre | : Technology & Engineering |
ISBN | : 1316175774 |
Modern wireless communications hardware is underpinned by RF and microwave design techniques. This insightful book contains a wealth of circuit layouts, design tips, and practical measurement techniques for building and testing practical gigahertz systems. The book covers everything you need to know to design, build, and test a high-frequency circuit. Microstrip components are discussed, including tricks for extracting good performance from cheap materials. Connectors and cables are also described, as are discrete passive components, antennas, low-noise amplifiers, oscillators, and frequency synthesizers. Practical measurement techniques are presented in detail, including the use of network analyzers, sampling oscilloscopes, spectrum analyzers, and noise figure meters. Throughout the focus is practical, and many worked examples and design projects are included. There is also a CD-ROM that contains a variety of design and analysis programs. The book is packed with indispensable information for students taking courses on RF or microwave circuits and for practising engineers.